Math, asked by laasyanekkanti9, 11 months ago

the smallest value of x that satisfies the equation 2^2x - 8 * 2^x = -12 is ?

please answer fast

Answers

Answered by MaheswariS
0

\textbf{Given:}

2^{2x}-8(2^x)+12=0

\textbf{To find:}

\text{The smallest value of x satisfying the given equation}

\textbf{Solution:}

2^{2x}-8(2^x)+12=0

(2^x)^2-8(2^x)+12=0

t^2-8t+12=0 \text{where $t=2^x$}

(t-6)(t-2)=0

\implies\,t=2,6

\text{when t=2,}

\implies\,2^x=2

\implies\boxed{\bf\,x=1}

\text{when t=6,}

\implies\,2^x=6

\implies\,2^x=2^{log_26}

\implies\,x=log_26

\implies\,x=log_2(2{\times}3)

\implies\,x=log_22+log_23

\implies\,x=1+log_23

\implies\boxed{\bf\,x=1+log_23}

\text{Comparing the values of x,}

\textbf{The least value of x satisfying the given equation is 1}

\textbf{Find more:}

If 5^x-1 + 5^x+1=650 then find x​

https://brainly.in/question/11573395

If a is equal to 2 power x minus 1 upon 2 power x - 2 and b is equal to 2 power minus x upon 2 power x + 1 and a minus b is equal to zero then find the value of x

https://brainly.in/question/10336892

Similar questions