Physics, asked by amzadansari024, 3 months ago

The solubility of Baso, in water is 2.42* 10^3 L-
298 K. The value of its solubility product (K) wi
(Given molar mass of Baso, = 233 g mol-1)
(NEET-2018
(1) 1.08 * 10-10 mol-2
(2) 1.08 * 10-12 mol-2
(3) 1.08 * 10-mol
(4) 1.08 * 10-14 mol AL-2​

Answers

Answered by gayzzz1460
11

Answer...............

Option A

Attachments:
Answered by GlamorousAngel
26

Answer :-

  • \sf\red{1.08\times 10^{-8}}

Explanation:

Solubility product is defined as the equilibrium constant in which a solid ionic compound is dissolved to produce its ions in solution.

It is represented as \blue{K_{sp}}

The equation for the ionization of BaSO_4 is given as:

 \sf \blue{BaSO_4   \implies \: Ba^{2+}+SO_4^{2-}} \:  \: { \bigstar}

</p><p>\bold{\underline{We \: are \: given:}}

\sf{ Solubility \:  of \:  BaSO_4}

\sf {</p><p>	</p><p>   \implies 2.42\times 10^{-3}}

  \sf{</p><p></p><p>Molar \:  mass \:  of \:  BaSO_4}</p><p>

 \sf{</p><p>   \implies 233 g/mol}

  \sf{</p><p></p><p>Molar \: solubility \: of \: BaSO_4}

 \sf{</p><p></p><p>   \implies \dfrac{2.42\times 10^{-3}g/L}{233g/mol}=10.38\times 10^{-3}mol/L }</p><p>

  \bold{</p><p>By \:  stoichiometry  \: of \:  the  \: reaction:}

 \sf{\implies </p><p></p><p>1  \:mole  \:of \: BaSO_4. \:</p><p></p><p>  gives \: 1 \: mole \: of  \:Ba^{2+} \:</p><p>  and \: 1  \:mole  \:of  \:SO_4^{2-}</p><p>	}

  \bold{</p><p>Expression \:  for \:  the \:  equilibrium \:  constant \:  of \:  BaSO_4 \:  will \:  be \: :}

  \sf{</p><p></p><p> \implies K_{sp}=[Ba^{2+}]^2[SO_4^{2-}]}

  \sf \green{</p><p>	</p><p>\implies K_{sp}=[10.38\times 10^{-3}][10.38\times 10^{-3}]=1.08\times 10^{-8}} \:  \: { \bigstar}

 \underline{ \underline{ \frak {\red{</p><p>Hence, \: the \: solubility \: product  \:of  \:BaSO_4</p><p> \:  is \: 1.08\times 10^{-8}</p><p> }}}}</p><p>

Similar questions