The solubility product constants of and AgBr are 1.1 × and 5.0 × respectively. Calculate the ratio of the molarities of their saturated solutions.
Answers
"For
At equilibrium the solubility of the reaction is as follows.
Let the solubility of
From the reaction
Or
Or
Or
Thus,
For AgBr, the solubility equilibrium is
Let the solubility of AgBr be S mol.
Or
Or
Or
The ratio of molarities of their saturated solutions
Since the solubility of is more than that of AgBr, so the former is more soluble."
"For A{ g }_{ 2 }C{ rO }_{ 4 },Ag
2
CrO
4
,
At equilibrium the solubility of the reaction is as follows.
A{ g }_{ 2 }Cr{ O }_{ 4 }\quad \rightleftharpoons \quad 2A{ g }^{ + }(aq)\quad +\quad Cr{ O }_{ 4 }^{ 2- }(aq)Ag
2
CrO
4
⇌2Ag
+
(aq)+CrO
4
2−
(aq)
Let the solubility of
From the reaction
[{ Ag }^{ + }]\quad =\quad 2S;\quad [Cr{ O }_{ 4 }^{ 2- }]\quad =\quad S[Ag
+
]=2S;[CrO
4
2−
]=S
{ K }_{ sp\quad}=\quad { [Ag }^{ + }][{ CrO }_{ 4 }^{ - }]K
sp
=[Ag
+
][CrO
4
−
]
=\quad { (2S) }^{ 2 }(S)=(2S)
2
(S)
{ K }_{ sp\quad}=\quad { 4S }^{ 3 }K
sp
=4S
3
Or
{ 4S }^{ 3 }\quad =\quad { K }_{ sp\quad}4S
3
=K
sp
Or
{ S }^{ 3 }\quad =\quad \frac { { K }_{ SP } }{ 4 }S
3
=
4
K
SP
Or
\therefore \quad S\quad =\quad { \left( \frac { 1.1\quad \times \quad { 10 }^{-12}}{4}\right)}^{ 1/3 }\quad =\quad 0.65\quad \times \quad { 10 }^{ -4 }\quad mol{ L }^{ -1 }∴S=(
4
1.1×10
−12
)
1/3
=0.65×10
−4
molL
−1
Thus,{ M }_{ { Ag }_{ 2 }{ CrO }_{ 4 } }\quad =\quad 0.65\quad \times { \quad 10 }^{ -4 }\quad mol.{ L }^{ -1 }M
Ag
2
CrO
4
=0.65×10
−4
mol.L
−1
For AgBr, the solubility equilibrium is
AgBr\quad \rightleftharpoons \quad { Ag }^{ + }(aq)\quad +\quad { Br }^{ - }(aq)AgBr⇌Ag
+
(aq)+Br
−
(aq)
Let the solubility of AgBr be S mol.{ L }^{ - }L
−
\therefore \quad { [Ag }^{ + }]\quad =\quad S;\quad { [Br }^{ - }]\quad =\quad S∴[Ag
+
]=S;[Br
−
]=S
{ K }_{ SP }\quad =\quad { [Ag }^{ + }]{ [Br }^{ - }]K
SP
=[Ag
+
][Br
−
]
=\quad (S)(S)=(S)(S)
{ K }_{ SP }\quad =\quad { S }^{ 2 }K
SP
=S
2
Or
{ S }^{ 2 }\quad =\quad { K }_{ SP }S
2
=K
SP
Or
S\quad =\quad { (K }_{ SP }{ ) }^{ 1/2 }S=(K
SP
)
1/2
Or
S\quad =\quad (5.0\quad \times \quad 10^{ -13 }{ ) }^{ 1/2 }S=(5.0×10
−13
)
1/2
S\quad =\quad 0.707\quad \times \quad { 10 }^{ -6 }\quad mol.{ L }^{ -1 }S=0.707×10
−6
mol.L
−1
The ratio of molarities of their saturated solutions =\quad \frac { { M }_{ { Ag }_{ 2 }{ CrO }_{ 4 } } }{ { M }_{ { Ag }Br } } \quad =\quad \frac { 0.65\quad \times \quad { 10 }^{ -4 } }{ 0.707\quad \times \quad { 10 }^{ -6 } } \quad =\quad 91.9=
M
AgBr
M
Ag
2
CrO
4
=
0.707×10
−6
0.65×10
−4
=91.9
Since the solubility of A{ g }_{ 2 }Cr{ O }_{ 4 }Ag
2
CrO
4
is more than that of AgBr, so the former is more soluble."