Math, asked by sunmeetbajwap4li5v, 1 year ago

The solution to this question please

Attachments:

Answers

Answered by saurabhsemalti
1
see the numerator ,write it as
 \cos(x)  =  {cos}^{2} ( \frac{x}{2} ) -  {sin}^{2} ( \frac{x}{2} ) \\  \:  \:  \:  \:  = ( \cos(  \frac{x}{2}  )  +  \sin( \frac{x}{2} ) )( \cos( \frac{x}{2}  )  -  \sin( \frac{x}{2} ) )
your question becomes integration of
 \frac{ \cos( \frac{x}{2}  ) -  \sin( \frac{x}{2} )  }{( \cos(( \frac{x}{2} )) +  \sin( \frac{x}{2} ) ) {}^{2}  } dx  \\ let \:  \cos( \frac{x}{2} )  +  \sin( \frac{x}{2} )  = t \\(  - ( \frac{1}{2} ) \sin( \frac{x}{2} )  + ( \frac{1}{2} ) \cos( \frac{x}{2} ) )dx = dt \\ ( \cos( \frac{x}{2} )  -  \sin( \frac{x}{2} ) ) dx=   2dt \\
your question Now becomes integration of

 \frac{2dt}{ {t}^{2} }  \\  =  2\frac{t {}^{ - 2 + 1} }{ - 2 + 1}  \\  =  -  \frac{2}{t} + c  \\ =   \frac{ - 2}{ \cos( \frac{x}{2} ) +  \sin( \frac{x}{2} )  }  + c
mark as brainliest
Similar questions