Physics, asked by paaresha, 1 year ago

The speed of train increases at a constant rate alfa from zero to V and then remains constant for an interval and finally decreses to zero at a constant rate Beta. If L be the total distance travelled then total time taken is?


Anonymous: what is the time interval for which it remains constant

Answers

Answered by AvmnuSng
202
(i) velocity inc. from 0 to V,
use first equation v = u + a*t : u = 0, v = V, a = α

this gives t = \frac{V}{ \alpha }

use second equation s = u*t + \frac{1}{2}*a* t^{2} : u = 0, a = α, t = \frac{V}{ \alpha }

this gives s1 = \frac{ V^{2} }{2* \alpha }

(ii) velocity dec. from V to 0,
use first equation v = u + a*t : u = 0, v = V, a = -β

this gives t = \frac{V}{ \beta }

use second equation s = u*t + \frac{1}{2}*a* t^{2} : u = V, a = -β, t = \frac{V}{ \beta }

this gives s2 = \frac{ V^{2} }{2* \beta }

So total distance traveled d = \frac{ V^{2} }{2} * ( \frac{1}{ \alpha } +  \frac{1}{ \beta } )

(iii) Thus distance traveled during constant velocity phase = L - \frac{ V^{2} }{2} * ( \frac{1}{ \alpha } + \frac{1}{ \beta } )

So time taken to travel this distance T = \frac{L - \frac{ V^{2} }{2} * ( \frac{1}{ \alpha } + \frac{1}{ \beta } )}{v} -> \frac{L}{V} -  \frac{V}{2} * ( \frac{1}{ \alpha } +  \frac{1}{ \beta } )

So total time taken to cover total distance L, = (\frac{V}{ \alpha }) + (\frac{L}{V} - \frac{V}{2} * ( \frac{1}{ \alpha } + \frac{1}{ \beta } )) +  (\frac{V}{ \beta })
-> \frac{L}{V} + \frac{V}{2} * ( \frac{1}{ \alpha } + \frac{1}{ \beta } )

Answer
\frac{L}{V} + \frac{V}{2} * ( \frac{1}{ \alpha } + \frac{1}{ \beta } )
Answered by kvnmurty
101
V = 0 + α t1      => t1 = V / α
S1 = 0 t + 1/2 α t1²  = 1/2 α V² / α² = 1/2 V²/α

S2 = V t2

0 = V - β t3    => t3 = V/β
S3 = (0+V)/2 * t3  = average speed * time
     =  1/2 V V / β = 1/2 V² / β
Total distance L = 1/2 V² (1/α + 1/β) + V t2
t2 =  [ L/V - 1/2 V(1/α+1/β) ]

Total time taken =   V/α + L /V - 1/2 V / α - 1/2 V/β + V/β
                   =  V/2 (1/α + 1/β ) + L/V


Similar questions