Math, asked by ritishkumarkanumuri0, 2 months ago

The statement
(3sin^x-2cosⓇx+y - 2 sinⓇx+ 3 cos* x)* =
= 9
is true for​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

(3 \sin ^{4} x - 2 \cos^{6} x + y - 2 \sin^{6} x + 3 \cos^{4} x) ^{2} = 9 \\

 \implies [3 (\sin ^{4} x  +  \cos ^{4} x) - 2(\sin^{6} x + \cos^{6} x )+ y  ]  ^{2} = 9 \\

 \implies [3  \{(\sin ^{2} x  +  \cos ^{2} x)^{2} - 2 \sin^{2}x \cos^{2} x  \}- 2 \{(\sin^{2} x + \cos^{2} x ) ( \sin ^{4} +  \cos ^{4}  x  -   \sin^{2}  x \cos^{2}x)  \}+ y  ]  ^{2} = 9 \\

 \implies [3  (1- 2 \sin^{2}x \cos^{2} x  )- 2 \{(1)( (\sin ^{2} +  \cos ^{2}  x )^{2} - 2 \sin^{2}x \cos^{2}x    -   \sin^{2}  x \cos^{2}x)  \}+ y  ]  ^{2} = 9 \\

 \implies [3  (1- 2 \sin^{2}x \cos^{2} x  )- 2 (1 - 3 \sin^{2}x \cos^{2}x    )  + y  ]  ^{2} = 9 \\

 \implies [3- 6 \sin^{2}x \cos^{2} x  - 2 +  6 \sin^{2}x \cos^{2}x      + y  ]  ^{2} = 9 \\

 \implies (1+ y  )  ^{2} = 9 \\

 \implies 1+ y^{2}  + 2y  = 9 \\

 \implies y^{2}  + 2y - 8  = 0 \\

 \implies y^{2}  + 4y  - 2y- 8  = 0 \\

 \implies y(y  + 4) - 2(y + 4) = 0 \\

 \implies (y - 2)(y  + 4) = 0 \\

 \implies y  =  2 \:  \: or \:  \: y   =  -  4\\

Similar questions