Math, asked by sammy666, 1 year ago

the steps with the answer

Attachments:

Answers

Answered by TooFree
1

 \dfrac{7 + 3\sqrt{5}}{3 + \sqrt{5}}   - \dfrac{7 - 3\sqrt{5}}{3 - \sqrt{5}} = a + \sqrt{5b}

  \dfrac{(7 + 3\sqrt{5}) (3 - \sqrt{5})- (7 - 3\sqrt{5} ) ({3 + \sqrt{5}}) } {(3 + \sqrt{5})(3 - \sqrt{5}) }  =   a + \sqrt{5b}

 \dfrac{ [ (7)(3) - 7(\sqrt{5}) + 9(\sqrt{5}) - 3(5) ] - [ (7)(3) + 7(\sqrt{5}) - 9(\sqrt{5}) - 3(5) ] } {3^2 - 5 }  =   a + \sqrt{5b}

 \dfrac{ [6 + 2(\sqrt{5}) ] - [ 6 -2 (\sqrt{5}) ] } {4 }  =   a + \sqrt{5b}

 \dfrac{ 6 + 2(\sqrt{5})  - 6 +2(\sqrt{5})  } {4 }  =   a + \sqrt{5b}

 \dfrac{ 4(\sqrt{5}) } {4 }  =   a + \sqrt{5b}

 \sqrt{5}  =   a + \sqrt{5b}

  a + \sqrt{5b}  = \sqrt{5}

Therefore a = 0 and b = 1

.

Answer : a = 0, b = 1

Similar questions