Math, asked by wrestlerharsh1999, 9 months ago

the sum n terms of an ap sequence is 203. the first is 20 and the common difference is 3 . find the number of terms n in the ap sequence ​

Answers

Answered by Anonymous
5

Solution:-

Given:-

 \to \rm\: S_n =  203

 \to \:  \rm \:first \: term \: ( a) = \: 20

 \to \rm \:common \:  \: difference \: ( d) \:  = 3

 \boxed{ \green { \bf \: S_n =  \frac{n}{2} \{2a \:  + (n - 1)d \} }}

Put the value on formula

 \rm \to \: 203 =  \frac{n}{2}  \{2 \times 20 + (n - 1)3 \}

 \rm \:  \to \: 203 =  \frac{n}{2}  \{40 + 3n - 3 \}

 \rm \:  \to \: 203 =  \frac{n}{2}  \{37 + 3n \}

 \rm \to \: 406 = 37n + 3 {n}^{2}

 \rm \to \: 3 {n}^{2}  + 37n - 406 = 0

 \to \rm \: 3 {n}^{2}  + 58n - 21n - 406 = 0

 \rm \to \: n(3n + 58) - 7(3n + 58) = 0

 \rm \to \: (n - 7)(3n + 58) = 0

 \rm \to \: n \:  = 7 \:  \: and \:  \:  \frac{58}{3}

 \to \rm \: n = 7

n = 58/3 is not nth term because n is not in the point form

Similar questions