the sum of 11 terms of an A.P whose 6th term is 5 is_ _ _ _ _
Answers
Answer:
Given,
\begin{gathered}{ \star{ \mathbb{n = 6}}} \\ { \star{ \mathbb{a _{n} = 5}}}\end{gathered}
⋆n=6
⋆a
n
=5
\begin{gathered}a_{n} = a + (n - 1)d \\ 5 = a + (6 - 1)d \\ 5 = a + 5d \\ a = 5 - 5d\end{gathered}
a
n
=a+(n−1)d
5=a+(6−1)d
5=a+5d
a=5−5d
Now to find the sum of 11 terms of the A.P
given,
\begin{gathered}{ \star{ \mathbb{n = 11}}} \\ { \star{ \mathbb{a = 5 - 5d}}}\end{gathered}
⋆n=11
⋆a=5−5d
then,
\begin{gathered}S_{11} = \frac{11}{2} (2a + (11 - 1)d) \\ S_{11} = \frac{11}{2}(2(5 - 5d) + 10d) \\ S_{11} = \frac{11}{2} (10 - 10d + 10d) \\ S_{11} = \frac{11}{2} \times 10 = 11 \times 5 \\ S_{11} = 55\end{gathered}
S
11
=
2
11
(2a+(11−1)d)
S
11
=
2
11
(2(5−5d)+10d)
S
11
=
2
11
(10−10d+10d)
S
11
=
2
11
×10=11×5
S
11
=55
So, your answer is 55
Hope it helps you...