Math, asked by rohank9858, 9 months ago

The sum of 15 terms of AP 4,7,10........
is.

Answers

Answered by Anonymous
17

Given :

  • A.P = 4 , 7 , 10 , .......

  • First term ( a ) = 4

  • Common difference ( d ) = 7 - 4 = 3

  • Number of terms ( n ) = 15

To Find :

  • Sum of 15 terms of given A.P

Solution :

 \large \boxed{ \boxed{ \sf S_n =  \frac{n}{2} \bigg[2a + (n - 1)d \bigg]} }\\  \\  \implies \sf S_{15} = \frac{15}{2}\bigg[2 \times 4 + (15 - 1)3 \bigg] \\  \\ \implies \sf S_{15} = \frac{15}{2}\bigg[8 + (14)3 \bigg] \\  \\ \implies \sf S_{15} = \frac{15}{2}\bigg[8 + 42 \bigg] \\  \\ \implies \sf S_{15} = \frac{15}{2} \times 50 \\  \\ \implies \sf S_{15} =15 \times 25 \\  \\  \large  \implies \boxed{ \boxed{ \sf S_{15} =375}}

Answered by Anonymous
3

Answer:

\bullet\sf{A.P. \:is \:4,7,10}

\bullet\sf{First\: term\: (a_1)=\: 4}

\bullet\sf{Common \:difference,d \:= \:7-4=3}

\bullet\sf{number\:of\:terms,n \:= \:15}

\large\sf\implies{To\:find\: -Sum\: of\: terms ,S_n}

\huge{\underline{\sf{\red{Solution}}}}

\large\implies\sf {\sf{\boxed{\boxed{\sf{S_n= \frac{n}{2}[2a+(n-1)d }}}}}

\large\implies\sf {S_n=\frac{15}{2} [2(4)+(15-1)3]}

\large\implies\sf {S_n=\frac{15}{2} [8+(14)3]}

\large\implies\sf {S_n= \frac{15}{2} [8+42]}

\large\implies\sf {S_n= \frac{15}{2}[50]}

\large\implies\sf {S_n= \frac{15}{2} \times \cancel 50 }

\large\implies\sf {S_n=15 \times25}

\large\implies\sf {S_n= 325}

\huge\implies\boxed{\boxed{\underline{\red{\bold{ S_n\:=\:375   }}}}}\\

Similar questions