Math, asked by mayankjainisme9835, 10 months ago

The sum of 5th term and 9th term of an AP is 72 and the sum of 7th and 12th terms is 97.
Find the AP.

Answers

Answered by KhushiMaindola
13

Answer:

A5 +a9=72

a+4d+a+8d=72

2a+12d=72............eq1

and

a7+a12=97

a+6d+a+11d=97

2a+17d=97.............eq2

subtracting eq1 from eq2

2a+17d=97

2a+12d=72

(-) (-) (-)

__________

5d=25

d=25/5

d=5

put d=5 in eq1

2a+12(5)=72

2a+60 =72

2a=72-60

a=12/2

a=6

Answered by Anonymous
25

Solution :

\bf{\red{\underline{\bf{Given\::}}}}

The sum of 5th term and 9th term of an A.P. is 72 and the sum of 7th term and 12th term is 97.

\bf{\red{\underline{\bf{To\:find\::}}}}

The A.P.

\bf{\red{\underline{\bf{Explanation\::}}}}

We know that formula of an A.P;

\boxed{\bf{a_{n}=a+(n-1)d}}}}}

  • a is the first term.
  • d is the common difference.
  • n is the term of an A.P.

A/q

\longrightarrow\sf{a_{5}+a_9}=72}\\\\\longrightarrow\sf{a+(5-1)d+a+(9-1)d=72}\\\\\longrightarrow\sf{a+4d+a+8d=72}\\\\\longrightarrow\sf{2a+12d=72}\\\\\longrightarrow\sf{2(a+6d)=72}\\\\\longrightarrow\sf{a+6d=\cancel{\dfrac{72}{2} }}\\\\\longrightarrow\sf{a+6d=36.....................(1)}

&

\longrightarrow\sf{a_{7}+a_{12}=97}\\\\\longrightarrow\sf{a+(7-1)d+a+(12-1)d=97}\\\\\longrightarrow\sf{a+6d+a+11d=97}\\\\\longrightarrow\sf{2a+17d=97..........................(2)}

\underline{\underline{\bf{Using\:substitution\:method\::}}}}}

From equation (1),we get;

\mapsto\sf{a+6d=36}\\\\\mapsto\sf{a=36-6d..........................(3)}

Putting the value of a in equation (2),we get;

\mapsto\sf{2(36-6d)+17d=97}\\\\\mapsto\sf{72-12d+17d=97}\\\\\mapsto\sf{72+5d=97}\\\\\mapsto\sf{5d=97-72}\\\\\mapsto\sf{5d=25}\\\\\mapsto\sf{d=\cancel{\dfrac{25}{5} }}\\\\\mapsto\sf{\pink{d=5}}

Putting the value of d in equation (3),we get;

\mapsto\sf{a=36-6(5)}\\\\\mapsto\sf{a=36-30}\\\\\mapsto\sf{\pink{a=6}}

Thus;

\boxed{\mid\bf{Arithmetic\:progression\:\mid}}}}

\bullet\sf{a=\boxed{6}}}}\\\\\bullet\sf{a+d=6+5=\boxed{11}}}}\\\\\bullet\sf{a+2d=6+2(5)=6+10=\boxed{16}}}\\\\\bullet\sf{a+3d=6+3(5)=6+15=\boxed{21}}}

Similar questions