Math, asked by Aashray1, 1 year ago

The sum of a 2-digit number is 7. If the digits are reversed, the number formed is 9 less than the original number. Find the number.

Answers

Answered by MaheswariS
7

\underline{\textbf{Given:}}

\textsf{Sum of digits of 2 digit number is 7}

\textsf{When the digits are reversed, the number formed}

\textsf{is 9 less than the original number}

\underline{\textbf{To find:}}

\textsf{The number}

\underline{\textbf{Solution:}}

\textsf{Let the two digit number be 10x+y}

\textsf{As per given dat,}

\textsf{Sum of digits is 7}

\implies\mathsf{x+y=7}

\implies\mathsf{y=7-x}

\textsf{When the digits are reversed,}

\mathsf{10y+x=10x+y-9}

\mathsf{-9x+9y=-9}

\mathsf{-x+(7-x)=-1}\;\;\;\;\textsf{(Using y=7-x)}

\mathsf{-2x=-8}}

\implies\mathsf{x=4}

\mathsf{when\;x=4,\;y=7-x}

\mathsf{y=7-4}

\implies\mathsf{y=3}

\textbf{Now,}

\mathsf{10x+y=10(4)+3=40+3=43}

\therefore\textbf{The required number is 43}

Answered by mdimtihaz
5

As we know, two digits numbers can be written as,

xy=10\times x+y

Given: The sum of a 2-digit number is 7.

x+y=7.....(1)

If the digits are reversed, the number formed is 9 less than the original number.

Therefore,

yx=xy-9

10\times y+x=10\times x+y-9

9y=9x-9\\y=x-1

x-y=1.....(2)

Adding eq(1) and eq(2),

x+y=7\\x-y=1

             

2x=8

 x=4

y=7-x\\y=7-4\\y=3

Hence the required number is 43.

#SPJ2

Similar questions