the sum of an AP 11, 17, 23 .... upto n terms is 700. how many terms are there in the series
Answers
Given:-
- An A.P = 11, 17, 23, . . . .
- Sum of the given A.P upto n terms = 700.
To Find:-
- No. of terms in the given A.P.
Formula Used:-
Here,
- = Sum of n terms
- a = First term of the A.P
- d = Common Difference
- n = No. of terms in an A.P
Solution:-
Using Formula,
Here,
- a = 11
- d = 17 - 11 = 6
Putting values,
Now, Using Middle Term Split:-
{n cannot be in fraction} So,
Hence, There are 14 terms in the series whose sum is 700.
━━━━━━━━━━━━━━━━━━━━━━━━━
.To Find:-
No. of terms in the given A.P.
Formula Used:-
{\boxed{\bf{S_n = \dfrac{n}{2}[2a+(n-1)d]}}}
S
n
=
2
n
[2a+(n−1)d]
Here,
\bf S_nS
n
= Sum of n terms
a = First term of the A.P
d = Common Difference
n = No. of terms in an A.P
Solution:-
Using Formula,
\bf :\implies\:S_n = \dfrac{n}{2}[2a+(n-1)d]:⟹S
n
=
2
n
[2a+(n−1)d]
Here,
\bf S_n=700S
n
=700
a = 11
d = 17 - 11 = 6
Putting values,
\sf :\implies\:700 = \dfrac{n}{2}[2\times11+(n-1)6]:⟹700=
2
n
[2×11+(n−1)6]
\sf :\implies\:700\times2= n[22+6n-6]:⟹700×2=n[22+6n−6]
\sf :\implies\:1400= n[16+6n]:⟹1400=n[16+6n]
\sf :\implies\:6n^2+16n= 1400:⟹6n
2
+16n=1400
\sf :\implies\:6n^2+16n-1400= 0:⟹6n
2
+16n−1400=0
\sf :\implies\:3n^2+8n-700= 0:⟹3n
2
+8n−700=0
Now, Using Middle Term Split:-
\sf :\implies\:3n^2+(50-42)n-700=0:⟹3n
2
+(50−42)n−700=0
\sf :\implies\:3n^2+50n-42n-700=0:⟹3n
2
+50n−42n−700=0
\sf :\implies\:n(3n+50)-14(3n+50)=0:⟹n(3n+50)−14(3n+50)=0
\sf :\implies\:(3n+50)(n-14) =0:⟹(3n+50)(n−14)=0
\sf :\implies\:3n+50 = 0\:and\:n-14 =0:⟹3n+50=0andn−14=0
\sf :\implies\:n = \dfrac{50}{3}\:and\:n=14:⟹n=
3
50
andn=14
{n cannot be in fraction} So,
\bf :\implies\:n=14:⟹n=14
Hence, There are 14 terms in the series whose sum is 700.