Math, asked by sangeetakushwaha2, 7 months ago

the sum of digit of a 2 digit number is 7.if the digit are reversed the new number increases by 3 less then 4 times the original number. find the original number​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
12

\huge\sf\pink{Answer}

☞ The original number is 16

━━━━━━━━━━━━━

\huge\sf\blue{Given}

✭ Sum of the digits of a two digit number is 7

✭ If the digits are reversed the new number increases by 3 less than 4 times the original Number

━━━━━━━━━━━━━

\huge\sf\gray{To \:Find}

◈ The Original Number?

━━━━━━━━━━━━━

\huge\sf\purple{Steps}

\large\underline{\underline{\sf Let}}

  • The number be 10x+y
  • When reversed it becomes 10y+x

\underline{\boldsymbol{As \ Per \ the \ Question}}

\sf x+y = 7

\sf x = 7-y\:\:\: -eq(1)

Also,

\sf 10y+x-3 = 4(10x+y)

\sf 10y+x-3 = 40x+4y

\sf 10y+x-3-40x-4y = 0

\sf 10y-4y+x-40x-3 = 0

\sf 6y-39x-3=0

\sf 39x-6y-3 = 0

✪ Divide the whole Equation by 3

\sf \dfrac{39x+6y-3}{3}

\sf 13x-2y=1 \:\:\: -eq(2)

Substituting the Value of eq(1) in eq(2)

\sf 13(7-y)-2y = 1

\sf 91-13y-2y = 1

\sf -15y = -90

\sf y = \dfrac{-90}{-15}

\sf \red{y = 6}

Substituting the value of y in eq(1)

\sf x=7-6

\sf \orange{x=1}

\sf \therefore The \ Number \ is \ 16

━━━━━━━━━━━━━━━━━━

Similar questions