Math, asked by yvandana1984, 10 months ago

the sum of digit of a two digit number is 11?if the number obtained by reversing the digit is 9 less than the original number. find the number​

Answers

Answered by Anonymous
54

Given :

  • The sum of digit of a two digit number is 11.
  • The number obtained by reversing the digit is 9 less than original number.

To Find :

  • The original number.

Solution :

Let the digit at the tens place be x.

Let the digit at the units place be y.

Original Number = (10x + y)

Case 1 :

The sum of the digit at tens place and at the units place is 11.

Equation :

\longrightarrow \sf{x+y=11}

\sf{x=11-y\:\:\:(1)}

Case 2 :

The number when reversed is 9 less than the original number.

Reversed Number = 10y + x.

Equation :

\longrightarrow \sf{10y+x=10x+y-9}

\longrightarrow \sf{10y-y=10x-x-9}

\longrightarrow \sf{9y=9x-9}

\longrightarrow \sf{9x-9=9y}

\longrightarrow \sf{9x-9y=9}

From equation (1), x = 11-y,

\longrightarrow \sf{9(11-y) -9y=9}

\longrightarrow \sf{99-9y-9y=9}

\longrightarrow \sf{-18y=9-99}

\longrightarrow \sf{-18y=-90}

\longrightarrow \sf{18y=90}

\longrightarrow \sf{y=\dfrac{90}{18}}

\longrightarrow \sf{y=5}

Substitute, y = 5 in equation (1),

\longrightarrow \sf{x=11-y}

\longrightarrow \sf{x=11-5}

\longrightarrow \sf{x=6}

\large{\boxed{\bold{Ten's\:digit\:=\:x\:=\:6}}}

\large{\boxed{\bold{Unit's\:digit\:=\:y\:=\:5}}}

\large{\boxed{\bold{Original\:Number\:=\:10x+y\:=\:10(6)+5=60+5=65}}}


Anonymous: Keep it up :)
Answered by StarrySoul
78

Given :

• Sum of digit of a two digit number = 11

• Number obtained by reversing the digit is 9 less than the original number

To Find :

• The number

Solution :

Let the digit at tens place be x and digit at units place be y

 \star \sf \: Original  \: Number  = 10(x + y)

 \star \sf \: Interchanged \: Number  = 10(y+ x)

Here, It is given that :

 \sf \longrightarrow \: x + y = 11...(i)

According to the Question :

\longrightarrow \sf{10y+x=10x+y-9}

\longrightarrow \sf{10y-y=10x-x-9}

\longrightarrow \sf{9y=9x-9}

\longrightarrow \sf{9x-9=9y}

\longrightarrow \sf{9x-9y=9}

From equation (1), x = 11-y,

\longrightarrow \sf{9(11-y) -9y=9}

\longrightarrow \sf{99-9y-9y=9}

\longrightarrow \sf{-18y=9-99}

\longrightarrow \sf{-18y=-90}

\longrightarrow \sf{18y=90}

\longrightarrow \sf{y=\cancel\dfrac{90}{18}}

 \sf \longrightarrow \: y =  \boxed{ \red{ \sf \: 5}}

Putting the value of y = 5 in equation i)

 \sf \longrightarrow \: x + y = 11

 \sf \longrightarrow \: x + 5 = 11

 \sf \longrightarrow \: x  = 11 - 5

 \sf \longrightarrow \: x =  \boxed{ \red{ \sf \: 6}}

Now Original Number :

 \star \sf \: Original  \: Number  = 10(6 + 5) =  \huge \boxed{ \purple{ \sf \: 65}}


Anonymous: Cool :)
StarrySoul: Thank you! :D
Similar questions
Math, 1 year ago