Math, asked by manishsharma40, 1 year ago

the sum of digits of a three digit number is 12 and the digits are in A.P. if the digits are reversed, then the number is diminished by 396. find the number.

Answers

Answered by jitendra94
52

let the 3 digit number be a-d,a,a+b
the it is given that it's sum is 12
(a-d)+(a)+(a+d)=12
a-d+a+a+d=12
3a=12
a=12/3
a=4.
now if the digits are reversed,
100(a+d)+ 10a+(a-d)=100(a-d)+10a+(a+d)-396
putting the value of a =4 the equation will be
400+100d+40+4-d=400-100d+40+4+d-396
99d=-99d-396
99d+99d=-396
198d=-396
d=-396/198
d=-2
with a=4 and d=-2
the number is (a-d )(a) (a+d)
[4-(-2)](4)[(4+(-2)]
642 ans
Attachments:
Answered by sanjeevk28012
9

The original number for the given condition is 642  .

Step-by-step explanation:

Given as :

The sum of three digits numbers = 12

The digits are in Arithmetic progression

Let The digits in A.P  are  a - d ,  a , a + d

So, Original number = 100 (a - d) + 10 a + 1 (a + d)

Or, Original number = 100 (a - d) + 10 a +  (a + d)

According to question

The sum of digits = 12

i.e a - d +  a + a + d = 12

Or,  3 a - 0 = 12

Or,        3 a = 12

∴              a = \dfrac{12}{3}

i.e            a = 4                    .........1

Again

if the digits are reversed, then the number is diminished by 396

Now, Reserved number =  100 (a + d) + 10 a +  (a - d)

So,  100 (a + d) + 10 a +  (a - d) = [ 100 (a - d) + 10 a +  (a + d) ] - 396

Rearranging the equation

     100 (a + d) + 10 a +  (a - d) - [ 100 (a - d) + 10 a +  (a + d) ]  = - 396

     (a + d) (100 - 1) + (10 a - 10 a) + (a - d) (1 - 100 ) = - 396

Or,  99 (a + d) + 0 - 99  (a - d) = - 396

Or,                99 (a + d - a + d) = - 396

Or,                              99 (2 d) = - 396

Or,                                         d = \dfrac{-396}{198}

i.e                                          d  = - 2                         ............2

Now, From eq 1 and eq 2

∵ Original number =  100 (a - d) + 10 a + 1 × (a + d)

                           =  100 (4 - (- 2) ) + 10 × 4 + 1 × (4 + (-2) )

                           = 100 (4 + 2) +  10 × 4 + 1 × (4 - 2)

                           = 100 × 6 +  10 × 4 + 1 × 2

                           = 600 + 40 + 2

                           = 642

So, The original number = 642

Hence, The original number for the given condition is 642  . Answer

Similar questions