Math, asked by pushasahu26, 9 months ago

the sum of first 14 terms of an AP is 1078 and its first term is 12 then its 20th term is

Answers

Answered by Anonymous
5

S O L U T I O N :

\bf{\large{\underline{\bf{Given\::}}}}}

The sum of first 14 terms of an A.P. is 1078 & it's first term is 12.

\bf{\large{\underline{\bf{To\:find\::}}}}}

The 20th term.

\bf{\large{\underline{\bf{Explanation\::}}}}}

We know that formula of the sum of an A.P;

\boxed{\bf{S_n=\frac{n}{2} \bigg[2a+(n-1)d\bigg]}}}}

A/q

\longrightarrow\rm{1078=\cancel{\dfrac{14}{2}} \bigg[2(12)+(14-1)d\bigg]}\\\\\\\longrightarrow\rm{1078=7[24+13d]}\\\\\\\longrightarrow\rm{\cancel{\dfrac{1078}{7} }=24+13d}\\\\\\\longrightarrow\rm{154=24+13d}\\\\\\\longrightarrow\rm{13d=154-24}\\\\\\\longrightarrow\rm{13d=130}\\\\\\\longrightarrow\rm{d=\cancel{130/13}}\\\\\\\longrightarrow\bf{d=10}

Now;

We know that formula of an A.P.;

\boxed{\bf{a_n=a+(n-1)d}}}}

  • First term (a) = 10
  • Common difference (d) = 10

\longrightarrow\rm{a_{20}=10+(20-1)\times10}\\\\\longrightarrow\rm{a_{20}=10+19\times 10}\\\\\longrightarrow\rm{a_{20}=10+190}\\\\\longrightarrow\bf{a_{20}=200}

Thus;

The 20th term will be 200 .

Similar questions