Math, asked by akshitasharma3120, 10 months ago

the sum of first 3 terms of an ap is 33 if the product of the first and the third term exceeds the second term by 29.find the ap

Answers

Answered by Anonymous
10

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{The \ required \ A.P. \ is \ 2,11,20,…}

\sf\orange{Given:}

\sf{\implies{S3=33}}

\sf{\implies{t1\times \ t3=t2+29}}

\sf\pink{To \ find:}

\sf{The \ A.P.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ three \ terms \ of \ A.P. \ be}

\sf{(a-d), \ a \ and \ (a+d)}

\sf{According \ to \ first \ condition}

\sf{(a-d)+a+(a+d)=33}

\sf{\therefore{3a=33}}

\sf{\therefore{a=\frac{33}{3}}}

\sf{\implies{a=11...(1)}}

\sf{According \ to \ second \ condition}

\sf{(a-d)(a+d)=a+29}

\sf{But, \ a=11 \ from \ eq(1)}

\sf{a^{2}-d^{2}=11+29}

\sf{11^{2}-d^{2}=40}

\sf{121-d^{2}=40}

\sf{d^{2}=121-40}

\sf{d^{2}=81}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\implies{d=9}}

\sf{\therefore{t1=(a-d)=11-9=2}}

\sf{t2=a=11}

\sf{t3=(a+d)=11+9=20}

\sf\purple{\tt{\therefore{The \ required \ A.P. \ is \ 2,11,20,…}}}

Similar questions