Math, asked by vibraniumsilver804, 1 year ago

The sum of first 8 term of an ap is hundred and the sum of first 19 term is 551 find ap

Answers

Answered by kartik2507
1

Answer:

2, 5, 8, 11 ..........

Step-by-step explanation:

sum of 8 terms = 100

sum of 19 terms = 551

s8 =  \frac{8}{2} (2a + 7d) = 100 \\ 2a + 7d =  \frac{100 \times 2}{8}  \\ 2a + 7d = 25 \:  \:  \:  \:  \:  \:  \: equ \: (1) \\  \\ s19 =  \frac{19}{2} (2a + 18d) = 551 \\  2a + 18d =  \frac{551 \times 2}{19}  \\ 2a + 18d = 58 \:  \:  \:  \:  \:  \: equ \: (2) \\ subtract  \: equ\: (2) - (1) \\ we \: get \:  \\ 11d = 33 \\ d =  \frac{33}{11}  = 3 \\ substitute \: d \: value \: in \: equ \: (1) \\ 2a + 7d = 25 \\ 2a + 7(3) = 25 \\ 2a + 21 = 25 \\ 2a = 25 - 21 = 4 \\ a =  \frac{4}{2}  = 2 \\  \\ the \: ap \: is \:  \\ a \:  \:  \: a + d \:  \:  \: a + 2d \:  \:  \: a  + 3d \\ 2 \:  \:  \: 5 \:  \:  \: 8 \:  \:  \: 11

Similar questions