Math, asked by sirishaRd6, 1 year ago

The sum of first 8 terms of an AP is 100 and sum of first 19 terms is 551 . find AP.​

Answers

Answered by raushan6198
0

hope it will help you

Attachments:
Answered by nain31
4
 \bold{For \: an \: AP}

nth term =  \boxed{ \mathsf{a + (n-1)d}}

Sum of nth terms =  \boxed{\mathsf{\dfrac{n}{2} \times (2a + (n-1)d)}}

where,

First term = a

Common difference = d

 \large \bold{ACCORDING \: TO \: QUESTION }

 \mathsf{t_8 = a + (8 -1)d}

 \mathsf{100 = a + 7d}----(1)

 \mathsf{t_19 = \dfrac{19}{2} \times (2a + (19)d)}

 \mathsf{551= 9.5 (19 + 19d}---(2)

 \mathsf{551 = 19a + 171d}---(2)

Multiply equation (1) with 2

 \mathsf{100 = a + 7d} × 19

 \mathsf{1900 = 19a + 133d} -(1)

On subtracting (1) by (2)

 \mathsf{1900 = 19a + 133d}

 \mathsf{551 = 19a + 171d}

 \mathsf{1349 = 38d}

 \mathsf{\dfrac{1349}{38} = d}

 \huge \boxed {\mathsf{d = 35.5}}

For a place value of d in any equation,

 \mathsf{100 = a + 7 \times 35.5}

 \mathsf{100 - 248.5 = a }

 \huge \boxed {\mathsf{a =  - 184.5}}

 \bold{For \: AP}

 \mathsf{ a = -184.5}

 \mathsf{ a + d = -184 + 35.5} = - 149

 \mathsf{ a + 2d = -47 + 2 \times 35.5} =

 \mathsf{ a + 3d = -184.5 + 3 \times 35.5 =78}

 \mathsf{ a + 4d = -184.5 + 4 \times 35.5 =-42.5}

 \bold{AP \: IS}

 \huge \boxed {\mathsf{ - 184.5  , -149  ,-78 ,-42.5 ......}}

Shruthi123456: Amazing answer Nainnnn❤
nain31: thank u
Shruthi123456: No thank u between us re
Similar questions