The sum of first 'm' terms of an A.P is 'n' and the sum of first 'n' terms is 'm', then show that the sum of first (m+n) terms is -(m+n). The most appropriate and fastest answer will be marked as the brainliest at once. Please respond ASAP.
Answers
Sp= p/2=2a +(p-1)d}, where "a" is the first term and "d" is the common difference.
n = m/2{2a+(m-1)d }
m = n/2{2a + (n-1)d}
n-m = m/2{2a+(m-1)d } - n/2{2a + (n-1)d}
n-m = am +m2d/2 - md/2 -an - n2d/2 + nd/2
n-m = a(m-n) + d/2 (m2 - m -n2 +n)
n-m= a(m-n) + d/2 [ (m+n) (m-n) -(m-n)]
n-m = a(m-n) + d/2[(m-n)(m+n-1)]
n-m = (m-n) [a + d/2(m+n-1)]
-(m-n) = (m-n) [a + d/2(m+n-1)]
-1 = 2a+d(m+n-1) upon 2
-2 = 2a+d(m+n-1)
since S(m+n)=m+n/2 * [2a+d(m+n-1)]
S(m+n) =m+n/2 * -2
S(m+n) = -(m+n)
I hope this will help you
Note: We know that Sum of first n terms of an AP sn = (n/2)[2a + (n - 1) * d]
(i)
Given : Sum of first 'm' terms of an AP is 'n'.
Sm = n
⇒ n = (n/2)[2a + (n - 1) * d]
⇒ 2n = m[2a + (m - 1) * d]
⇒ 2n = 2am + m(m - 1) * d
⇒ 2n = 2am + (m^2 - m) * d
-------------------------------------------------------------------------------------------------------------------
(ii)
Given : Sum of first 'n' terms is 'm'.
Sn = m
⇒ m = (n/2)[2a + (n - 1) * d]
⇒ 2m = 2an + n(n - 1) * d
⇒ 2m = 2an + (n^2 - n) * d
-----------------------------------------------------------------------------------------------------------------
On solving (1) - (2), we get
⇒ 2n - 2m = 2am - 2an + d(m^2 - m - n^2 + n)
⇒ -2(m - n) = 2a(m - n) + d[(m^2 - n^2) - (m - n)]
⇒ -2(m - n) = 2a(m - n) + d[(m + n)(m - n) - (m - n)]
Divide the equation by m - n on both sides, we get
⇒ -2 = 2a + d(m + n - 1) ------- (1)
Given Sum of first (m + n) terms:
Sm + n:
⇒ (m + n)/2[2a + (m + n - 1) * d]
⇒ (m + n)/2[-2] {from (1)]
⇒ (m + n)[-1]
⇒ -(m + n).
Therefore, Sum of first (m + n) terms is -(m + n).
Hope this helps!