Math, asked by gurugonda123, 2 months ago

The sum of first ‘n’ terms of an arithemetic progression is given by the formula

Sn

= 3n2 + n, then its 3rd term is

A. 14 B. 16

C. 22 D. 42​

Answers

Answered by amansharma264
78

EXPLANATION.

⇒ Sₙ = 3n² + n.

As we know that,

⇒ Tₙ = Sₙ - Sₙ₋₁.

Using this formula in the equation, we get.

Put the value of n = n - 1 in the equation, we get.

⇒ Tₙ = 3n² + n - [3(n - 1)² + (n - 1)].

⇒ Tₙ = 3n² + n - [3(n² + 1 - 2n) + n - 1].

⇒ Tₙ = 3n² + n - [3n² + 3 - 6n + n - 1].

⇒ Tₙ = 3n² + n - [3n² - 5n + 2].

⇒ Tₙ = 3n² + n - 3n² + 5n - 2.

⇒ Tₙ = n + 5n - 2.

⇒ Tₙ = 6n - 2.

⇒ 6n - 2 = [Algebraic expression].

Put the value of n = 1 in the equation, we get.

⇒ 6(1) - 2.

⇒ 6 - 2 = 4.

Put the value of n = 2 in the equation, we get.

⇒ 6(2) - 2.

⇒ 12 - 2 = 10.

Put the value of n = 3 in the equation, we get.

⇒ 6(3) - 2.

⇒ 18 - 2 = 16.

Put the value of n = 4 in the equation, we get.

⇒ 6(4) - 2.

⇒ 24 - 2 = 22.

Series = 4, 10, 16, 22, . . . . .

First term = a = 4.

Common difference = d = b - a = c - b.

Common difference = d = 10 - 4 = 6.

As we know that,

General term of an A.P.

⇒ aₙ = a + (n - 1)d.

3rd term = a₃

⇒ a₃ = a + (3 - 1)d.

⇒ a₃ = a + 2d.

Put the value of a = 4 and d = 6 in the equation, we get.

⇒ a₃ = 4 + 2(6).

⇒ a₃ = 4 + 12.

⇒ a₃ = 16.

Option [B] is correct answer.

                                                                                                                    MORE INFORMATION.

Supposition of an A.P.

(1) = Three terms as : a - d, a, a + d.

(2) = Four terms as : a - 3d, a - d, a + d, a + 3d.

(3) = Five terms as : a - 2d, a - d, a, a + d, a + 2d.

Answered by venugopalvenugopal20
7

14 jdjdirjdiosjeosjidjr7hfidhncidníogih9eiccodood

Similar questions