Math, asked by abuzar7024, 7 months ago

the sum of first q terms of an ap is 63q-3q² if the p term is -60 find the value of p and also its 11th term​

Answers

Answered by Anonymous
10

Answer:

\sf{The \ value \ of \ p \ is \ 21 \ and \ it's \ 11^{th} \ term}

\sf{is \ 0.}

Given:

\sf{Sum \ of \ q \ terms \ of \ an \ A.P. \ is \ 63q-3q^{2}.}

To find:

\sf{If \ the \ p \ term \ is \ -60 \ find \ the \ value \ of \ p}

\sf{and \ it's \ 11^{th} \ term.}

Solution:

\sf{Sum \ of \ q \ terms \ is \ 63q-3q^{2}}

\sf{i.e. \ S_{q}=63q-3q^{2}}

\sf{\therefore{S_{1}=63(1)-3(1)^{2}}}

\sf{\therefore{S_{1}=63-3}}

\sf{\therefore{S_{1}=60}}

\sf{\implies{t_{1}=60}}

\sf{S_{2}=63(2)-3(2)^{2}}

\sf{\therefore{S_{2}=126-12}}

\sf{\therefore{S_{2}=114}}

\sf{t_{2}=S_{2}-S_{1}}

\sf{\therefore{t_{2}=114-60}}

\sf{\therefore{t_{2}=54}}

\sf{Now,}

\sf{t_{1}=a=60, \ d=t_{2}-t_{1}=54-60=-6}

\sf{Let, \ t_{n}=p=-60}

\boxed{\sf{t_{n}=a+(n-1)d}}

\sf{\therefore{-60=60+(n-1)\times(-6)}}

\sf{\therefore{-6(n-1)=-120}}

\sf{\therefore{n-1=\dfrac{120}{6}}}

\sf{\therefore{n=20+1}}

\sf{\therefore{n=21}}

\sf{Hence, \ the \ value \ of \ p \ is \ also \ 21.}

\sf{t_{11}=60+(11-1)\times(-6)}

\sf{\therefore{t_{11}=60-60}}

\sf{\therefore{t_{11}=0}}

\sf\purple{\tt{\therefore{The \ value \ of \ p \ is \ 21 \ and \ it's \ 11^{th} \ term}}}

\sf\purple{\tt{is \ 0.}}

Similar questions