Math, asked by Lalremlengi, 1 year ago

the sum of first three terms of a G.P is 13/12 and their oroduct is -1 .Find G.P.

Answers

Answered by 4Gdivyansh
1
rowseNotessearch

HOMEWORK HELP > MATH

The sum of three numbers in G.P. is 13/12 and their product is -1. Which are these numbers ?

Let a1,a2,a3 be part of a G.P

==> a1 + a2 + a3 = 13/12.... (1)

==> a1*a2*a3 = -1............(2)

But:

a1 = a1

a2= a1*r

a3 = a1*r^2

==> a1+ a2 + a3 = a1 + a1*r + a1*r^2

==> a1 + a1r + a1r^2 = 13/12........(1)

Also:

a1*a2*a3 = -1

==> a1*a1*r *a1^r^2 = a1^3 * r^3 = (a1*r)^3

==> (a1*r)^3 = -1

==> a1*r = -1

==> a1= -1/r........(2)

Now substitute in (1):

==> a1 + a1*r + a1*r^2 = 13/12

==? -1/r  -1 + -r = 13/12

==> (-1 -r -r^2)/r = 13/12

==> Cross multiply:

==> 13r = 12(-r^2 -r -1)

==> 13r = -12r^2 - 12r -12

==> 12r^2 + 25r + 12 = 0

==> r 1= -25 + sqrt(625 - 4*144) /24

            = [-25 + sqrt(49)]/24

            = -25 + 7/24= -18/24 = -3/4

==> r1= -3/4

==> r2= -25 - 7/24 = -32/24 = -4/3

Then we have two solutions:

When r= -3/4

==> a1= 4/3

a2= 4/3*(-3/4) = -1

a3= 4/3*(-3/4)^2 = 3/4

When r= -4/3

==> a1= 3/4

a2= 3/4* (-4/3) = -1

a3= 3/4*(-4/3)^2 = 4/3
Similar questions