the sum of first three terms of a G.P is 13/12 and their oroduct is -1 .Find G.P.
Answers
Answered by
1
rowseNotessearch
HOMEWORK HELP > MATH
The sum of three numbers in G.P. is 13/12 and their product is -1. Which are these numbers ?
Let a1,a2,a3 be part of a G.P
==> a1 + a2 + a3 = 13/12.... (1)
==> a1*a2*a3 = -1............(2)
But:
a1 = a1
a2= a1*r
a3 = a1*r^2
==> a1+ a2 + a3 = a1 + a1*r + a1*r^2
==> a1 + a1r + a1r^2 = 13/12........(1)
Also:
a1*a2*a3 = -1
==> a1*a1*r *a1^r^2 = a1^3 * r^3 = (a1*r)^3
==> (a1*r)^3 = -1
==> a1*r = -1
==> a1= -1/r........(2)
Now substitute in (1):
==> a1 + a1*r + a1*r^2 = 13/12
==? -1/r -1 + -r = 13/12
==> (-1 -r -r^2)/r = 13/12
==> Cross multiply:
==> 13r = 12(-r^2 -r -1)
==> 13r = -12r^2 - 12r -12
==> 12r^2 + 25r + 12 = 0
==> r 1= -25 + sqrt(625 - 4*144) /24
= [-25 + sqrt(49)]/24
= -25 + 7/24= -18/24 = -3/4
==> r1= -3/4
==> r2= -25 - 7/24 = -32/24 = -4/3
Then we have two solutions:
When r= -3/4
==> a1= 4/3
a2= 4/3*(-3/4) = -1
a3= 4/3*(-3/4)^2 = 3/4
When r= -4/3
==> a1= 3/4
a2= 3/4* (-4/3) = -1
a3= 3/4*(-4/3)^2 = 4/3
HOMEWORK HELP > MATH
The sum of three numbers in G.P. is 13/12 and their product is -1. Which are these numbers ?
Let a1,a2,a3 be part of a G.P
==> a1 + a2 + a3 = 13/12.... (1)
==> a1*a2*a3 = -1............(2)
But:
a1 = a1
a2= a1*r
a3 = a1*r^2
==> a1+ a2 + a3 = a1 + a1*r + a1*r^2
==> a1 + a1r + a1r^2 = 13/12........(1)
Also:
a1*a2*a3 = -1
==> a1*a1*r *a1^r^2 = a1^3 * r^3 = (a1*r)^3
==> (a1*r)^3 = -1
==> a1*r = -1
==> a1= -1/r........(2)
Now substitute in (1):
==> a1 + a1*r + a1*r^2 = 13/12
==? -1/r -1 + -r = 13/12
==> (-1 -r -r^2)/r = 13/12
==> Cross multiply:
==> 13r = 12(-r^2 -r -1)
==> 13r = -12r^2 - 12r -12
==> 12r^2 + 25r + 12 = 0
==> r 1= -25 + sqrt(625 - 4*144) /24
= [-25 + sqrt(49)]/24
= -25 + 7/24= -18/24 = -3/4
==> r1= -3/4
==> r2= -25 - 7/24 = -32/24 = -4/3
Then we have two solutions:
When r= -3/4
==> a1= 4/3
a2= 4/3*(-3/4) = -1
a3= 4/3*(-3/4)^2 = 3/4
When r= -4/3
==> a1= 3/4
a2= 3/4* (-4/3) = -1
a3= 3/4*(-4/3)^2 = 4/3
Similar questions