the sum of four consecutive no in an ap is 32 and the ratio of the product of the first and last term of the product of two middle term is 7 rato 15 find the number
Answers
Answered by
4
Hey !!!
===============
Here is your answer -
=====================
Let the number be a - 3d , a - d , a +d , a +3d
So
According to the question
a - 3d + a - d + a + d + a + 3d = 32
4a = 32
a = 8
So first term = 8
Now !!
According to the second criterion
(a - 3d ) × ( a + 3d ) / ( a - d ) ( a + d ) = 7 /15
a2 - 9d2 / a2- d2 = 7/15
so
15 ( a2 - 9d2 ) = 7 ( a2 - d2)
15a2-135d2 = 7a2-7d2
8a2-128d2 = 0
d2 = 4, ±2
Therefore d=4 or d=±2 1mark
So, when a=8 and d=2, the numbers are 2,6,10,14.
When a=8,d=-2 the numbers are 14,10,6,2
===============
Here is your answer -
=====================
Let the number be a - 3d , a - d , a +d , a +3d
So
According to the question
a - 3d + a - d + a + d + a + 3d = 32
4a = 32
a = 8
So first term = 8
Now !!
According to the second criterion
(a - 3d ) × ( a + 3d ) / ( a - d ) ( a + d ) = 7 /15
a2 - 9d2 / a2- d2 = 7/15
so
15 ( a2 - 9d2 ) = 7 ( a2 - d2)
15a2-135d2 = 7a2-7d2
8a2-128d2 = 0
d2 = 4, ±2
Therefore d=4 or d=±2 1mark
So, when a=8 and d=2, the numbers are 2,6,10,14.
When a=8,d=-2 the numbers are 14,10,6,2
Answered by
1
Let the four consecutive numbers in AP be (a-3d),(a-d),(a+d)and (a+3d).
So,A/Q
a+3d+a-d+a+d+a+3d=32
4a=32
a=32/4
a=8 -------------(1)
Now,
(a-3d) (a+3d). 7
__________. =___
(a-d) (a+d). 15
15(a2-9d2)=7(a2-d2)
15a2-135d2=7a2-7d2
15a2-7a2=135d2-7d2
8a2=128d2
Putting the value of a from equation (1)
8(8)2=128d2
128d2=512
d2=512/128
d2=4
d=√4
d=2
So,no. Are
8-6=2
8-2=6
8+2=10
8+6=14
So,A/Q
a+3d+a-d+a+d+a+3d=32
4a=32
a=32/4
a=8 -------------(1)
Now,
(a-3d) (a+3d). 7
__________. =___
(a-d) (a+d). 15
15(a2-9d2)=7(a2-d2)
15a2-135d2=7a2-7d2
15a2-7a2=135d2-7d2
8a2=128d2
Putting the value of a from equation (1)
8(8)2=128d2
128d2=512
d2=512/128
d2=4
d=√4
d=2
So,no. Are
8-6=2
8-2=6
8+2=10
8+6=14
Similar questions
Psychology,
8 months ago
Math,
8 months ago
English,
1 year ago
Math,
1 year ago
English,
1 year ago