The sum of four numbers is 20 and the sum of their squares is 120
Answers
✧══════•❁❀❁•══════✧
Let the four numbers in A.P be a-3d, a-d,a+d,a+3d. ---- (1)
Given that Sum of the terms = 20.
= (a-3d) + (a-d) + (a+d) + (a+3d) = 20
4a = 20
a = 5. ---- (2)
Given that sum of squares of the term = 120.
= (a-3d)^2 + (a-d)^2 + (a+d)^2 + (a+3d)^2 = 120
= (a^2 + 9d^2 - 6ad) + (a^2+d^2-2ab) + (a^2+d^2+2ad) + (a^2+9d^2+6ad) = 120
= 4a^2 + 20d^2 = 120
Substitute a = 5 from (2) .
4(5)^2 + 20d^2 = 120
100 + 20d^2 = 120
20d^2 = 20
d = +1 (or) - 1.
Since AP cannot be negative.
Substitute a = 5 and d = 1 in (1), we get
a - 3d, a-d, a+d, a+3d = 2,4,6,8
✧══════•❁❀❁•══════✧
Step-by-step explanation:
Let the numbers be (a−3d),(a−d),(a+d),(a+3d).
Then, Sum of numbers =20
⟹(a−3d)+(a−d)+(a+d)+(a+3d)=20⟹4a=20⟹a=5
It is given that, sum of the squares =120
⟹(a−3d)
2
+(a−d)
2
+(a+d)
2
+(a+a+3d)
2
=120
⟹4a
2
+20d
2
=120
⟹a
2
+5d
2
=30
⟹25+5d
2
=30
⟹5d
2
=5⟹d=±1If d=1, the, the numbers are 2,4,6,8.
If d=−1, then the numbers are 8,6,4,2.