Math, asked by ramcharan14, 1 year ago

the sum of frist n terms of 3 ap are s1 S2 S3 res. the first term of each ap is 1 and common difference are 1,2,3 res. prove that S1 + S3= 2S2

Answers

Answered by Anonymous
4
There you go pal,

Nice question.

Answer in attachment
Attachments:

Anonymous: Nice :)
Answered by Anonymous
18

\underline{\underline{\Large{\mathfrak{Solution : }}}}




\underline{\textsf{For 1st A.P.,}} \\ \\ \sf \implies First \: term(a_1) \: = \: 1   \\ \\ \sf \implies Common \: different (d_1 ) \: = \: 1 \\ \\ \sf \implies Number \: of \: terms \: = \: n \\ \\ \textsf{Now, } \\ \\ \sf \implies S_1 \: = \: \dfrac{n}{2}\{2a_1 \: + \: ( n \: - \: 1 )d_1 \} \\ \\ \sf \implies S_1 \: = \: \dfrac{n}{2}\{ 2 \: \times \: 1 \: + \: ( n \: - \: 1)1 \} \\ \\ \sf \implies S_1 \: = \: \dfrac{n}{2}(2 \: + \: n \: - \: 1 )\\ \\ \sf \: \: \therefore \: \:  S_1 \: = \: \dfrac{n}{2}(n \: + \: 1 ) \qquad...(1)




\underline{\textsf{For 2nd A.P.,}} \\ \\ \sf \implies First \: term(a_2) \: = \: 1   \\ \\ \sf \implies Common \: different (d_2 ) \: = \: 2 \\ \\ \sf \implies Number \: of \: terms \: = \: n \\ \\ \textsf{Now, } \\ \\ \sf \implies S_2 \: = \: \dfrac{n}{2}\{2a_2 \: + \: ( n \: - \: 1 )d_2 \} \\ \\ \sf \implies S_2 \: = \: \dfrac{n}{2}\{ 2 \: \times \: 1 \: + \: ( n \: - \: 1)2\} \\ \\ \sf \implies S_2 \: = \: \dfrac{n}{2}( \cancel{2 }\: + \: 2n \: - \: \cancel{ 2})\\ \\ \sf \implies S_2 \: = \: \dfrac{n}{ \cancel{2}} \:  \times  \:  \cancel{2}n \\  \\  \sf  \:  \: \therefore \:  \: S_2 \:  =  \:  {n}^{2}  \qquad...(2)




\underline{\textsf{For 3rd A.P.,}} \\ \\ \sf \implies First \: term(a_3) \: = \: 1   \\ \\ \sf \implies Common \: different (d_3 ) \: = \: 3 \\ \\ \sf \implies Number \: of \: terms \: = \: n \\ \\ \textsf{Now, } \\ \\ \sf \implies S_3 \: = \: \dfrac{n}{2}\{2a_3 \: + \: ( n \: - \: 1 )d_3\} \\ \\ \sf \implies S_3 \: = \: \dfrac{n}{2}\{ 2 \: \times \: 1 \: + \: ( n \: - \: 1)3 \} \\ \\ \sf \implies S_3 \: = \: \dfrac{n}{2}(2 \: + \: 3n \: - \: 3)\\ \\ \sf \: \: \therefore \: \:  S_3 \: = \: \dfrac{n}{2}(3n \:  - \: 1 ) \qquad...(3)




\underline{\textsf{Now , add (1) and (3) , }} \\ \\ \sf \implies S_1 \: + \: S_3 \: = \: \dfrac{n}{2}(n \: + \: 1) \: + \: \dfrac{n}{2}(3n \: - \: 1 ) \\ \\ \sf \implies S_1 \: + \: S_3 \: = \: \dfrac{n}{2}( n \: + \: \cancel{1} \: + \: 3n \: - \: \cancel{ 1 }) \\ \\ \sf \implies S_1 \: + \: S_3 \:= \: \dfrac{n}{2}( 4n) \\ \\ \sf \implies S_1 \: + \: S_3 \: = \: n \: \times \: 2n \\ \\ \sf \: \: \therefore \: \: S_1 \: + \: S_3 \: = \: 2n^2 \qquad...(4)




\underline{\textsf{Now , divide (4) by (2), }} \\ \\ \sf \implies \dfrac{S_1 \: + \: S_3}{S_2} \: = \: \dfrac{2 \: \cancel{n^2}}{\cancel{n^2}} \\ \\ \sf \implies \dfrac{S_1 \: + \: S_3}{S_2} \: = \: 2 \\ \\ \sf \: \: \therefore \: \: S_1 \: + \: S_3 \: = \: 2S_2 \\ \\ \\  \underline{\underline{\mathsf{\Large{Proved !! }}}}

Noah11: Well Answered, Sans Serif! ^_^
Anonymous: Thanks Bruh !!
VijayaLaxmiMehra1: Perfect answer as always:-)
Anonymous: Great answer :)
Similar questions