the sum of how many terms of the AP 9,17,25,... is 636?
Answers
Answered by
6
Sn=n/2[2a+(n-1)d]
here a=9. , d=8. , Sn=636 , n=??
636 = n/2[18 + 8n -8 ]
1272 = 18n + 8n² -8n
1272 = 8n² + 10n
636 = 4n² + 5n
4n² + 5n - 636 =0
4n² + 53n -48n -636 =0
n(4n+53)-48(4n+53)=0
(n-48) (4n+53)=0
then
n=48 or n=(-53/4)
n cannot be negative or fraction so n=48
hence sum of 48 terms of given A.P is 636
HOPE IT HELPS
here a=9. , d=8. , Sn=636 , n=??
636 = n/2[18 + 8n -8 ]
1272 = 18n + 8n² -8n
1272 = 8n² + 10n
636 = 4n² + 5n
4n² + 5n - 636 =0
4n² + 53n -48n -636 =0
n(4n+53)-48(4n+53)=0
(n-48) (4n+53)=0
then
n=48 or n=(-53/4)
n cannot be negative or fraction so n=48
hence sum of 48 terms of given A.P is 636
HOPE IT HELPS
Answered by
15
Let a=first term
d=difference
Given a=9
d=17-9
=8
Sn=636
n/2*[2a+(n-1)d]
636=n/2*[18+(n-1)8]
1272=n[18+8n-8]
=1272=n[10+8n]
=1272=10n+8n²
=4n²+5n-636=0
=4n²-48n+53n-636=0
=4n(n-12)+53(n-12)=0
(n-12)(4n+53)=0
n=12 or n=-53/4
but n cannot be negative.
n=12.
12 terms need to be added.
Hope it helps.
Similar questions