Math, asked by iuhygtfrdeswe1542, 1 year ago

The sum of inifinte g.p is. 15and the sum of their square is 45.then find the series

Answers

Answered by BEJOICE
4
Let the 1st term of GP be a and common ratio be r
Given,
 \frac{a}{1 - r}  = 15  -  -  - (1) \\ and \:  \:  \frac{ {a}^{2} }{1 -  {r}^{2} }  = 45  -  -  - (2)\\ squaring \: (1) \:  \:  {( \frac{a}{1 - r})}^{2}  = 225 \\  \frac{ {a}^{2} }{ {(1 - r)}^{2}  }  = 225 -  -  - (3) \\  \\  \frac{(3)}{(2)}  \: gives \:  \:  \frac{1 -  {r}^{2} }{ {(1 - r)}^{2} }  =  \frac{225}{45}  = 5 \\  \frac{1 + r}{1 - r}  = 5 \\ 1 + r = 5 - 5r \\ 6r = 4 \\ r =  \frac{2}{3}  \\  \\ from \: (1) \:  \: a = 15 \times (1 - r) \\  = 15 \times (1 -  \frac{2}{3} ) = 5 \\  \\ thus \:  \: series \:  \: is \\ 5  +  \frac{10}{3}  +  \frac{20}{9}  + .....
Similar questions