Math, asked by pavithra1471, 9 months ago

the sum of money that will yield ₹400 as compound interest at 5% pa compounded yearly for I year is​

Answers

Answered by MaIeficent
8

Step-by-step explanation:

\bf{\underline{\underline\red{Given:-}}}

  • Compound Interest = ₹400

  • Rate of interest = 5%

  • Time = 1 year.

\bf{\underline{\underline\blue{To\: Find:-}}}

  • The sum of money ( Principal )

\bf{\underline{\underline\green{Solution:-}}}

As we know that:-

\boxed{ \rm \leadsto Amount = P\bigg({1 +  \frac{r}{100} }  \bigg)^{n} }

Here:-

• P = Principal

• r = rate of interest = 5%

• n = time = 1 year

Substituting the values:-

\rm \implies A= P \bigg({1 +  \dfrac{5}{100} }  \bigg)^{1}

\rm \implies A= P \bigg({ \dfrac{100 + 5}{100} }  \bigg)

\rm \implies A= P \bigg({ \dfrac{105}{100} }  \bigg)

\rm \implies A= P \bigg({ \dfrac{21}{20} }  \bigg)

\rm \implies A= { \dfrac{21P}{20} } ......(i)

Now:;

 \boxed{\rm \implies A - P=C.I}

( Here:- CI = Compound Interest = ₹400)

From(i)

 \rm \implies  \dfrac{21P}{20}  - P=400

 \rm \implies  \dfrac{21P - 20P}{20}  =400

 \rm \implies  \dfrac{P}{20}  =400

 \rm \implies  {P} =400 \times 20

 \rm \implies  {P} =8000

  \boxed{ \rm \therefore \: Sum \: of \: money =Rs.8000}

Similar questions