the sum of n terms of the ap √2,√8,√18,√32,...is
Answers
Answered by
6
A. P. = √2,√8,√18,√32,.
First term, a = √2
Second term, a2 = √8
Common difference, d = a2 - a = √8 - √2
d = 2√2 - √2 = √2.
Sum of n terms of A. P.
Sn = n/2 [ 2 a + ( n - 1 ) d ]
Sn = n / 2 [ 2 √2 + ( n - 1 ) √2 ]
Sn = n / 2 [ 2 √2 + √2 n - √2 ]
️ Sn = n / 2 [ √2 n + √2 ]
️Sn = ( √2 n² + √2 n) / 2.
Sn = [√2 n ( n +1 ) ] / 2
Sn = [√2 n ( n +1 ) ] * √2] /
2 *√2
Sn = [ 2 n ( n + 1 )] / 2√2
⏺️Sn = n( n + 1 ) / √ 2
First term, a = √2
Second term, a2 = √8
Common difference, d = a2 - a = √8 - √2
d = 2√2 - √2 = √2.
Sum of n terms of A. P.
Sn = n/2 [ 2 a + ( n - 1 ) d ]
Sn = n / 2 [ 2 √2 + ( n - 1 ) √2 ]
Sn = n / 2 [ 2 √2 + √2 n - √2 ]
️ Sn = n / 2 [ √2 n + √2 ]
️Sn = ( √2 n² + √2 n) / 2.
Sn = [√2 n ( n +1 ) ] / 2
Sn = [√2 n ( n +1 ) ] * √2] /
2 *√2
Sn = [ 2 n ( n + 1 )] / 2√2
⏺️Sn = n( n + 1 ) / √ 2
amitasaini04:
but still its not got an answer ...its answer is 1/√2 n( n+1) i can not find the correct a nswer
Similar questions