The sum of numerator and denominator of a fraction is 3 less than twice the denominator. If each of the numerator and denominator is decreased by 1, the fraction becomes 12. Find the fraction
Answers
Solution :
The sum of numerator & denominator of a fraction is 3 less than twice the denominator. If each of the numerator & denominator is decreased by 1, the fraction becomes 1/2.
Let the numerator digit be r & denominator digit be m
A/q
&
∴ Putting the value of m in equation (1),we get;
Thus;
Solution :
The sum of numerator & denominator of a fraction is 3 less than twice the denominator. If each of the numerator & denominator is decreased by 1, the fraction becomes 1/2.
Let the numerator digit be r & denominator digit be m
A/q
\begin{lgathered}\longrightarrow\sf{r+m+3=2m}\\\\\longrightarrow\sf{r+m-2m=-3}\\\\\longrightarrow\sf{r-m=-3}\\\\\longrightarrow\bf{r=-3+m......................(1)}\end{lgathered}
⟶r+m+3=2m
⟶r+m−2m=−3
⟶r−m=−3
⟶r=−3+m......................(1)
&
\begin{lgathered}\longrightarrow\sf{\dfrac{r-1}{m-1} =\dfrac{1}{2} }\\\\\longrightarrow\sf{2(r-1)=1(m-1)}\\\\\longrightarrow\sf{2r-2=m-1}\\\\\longrightarrow\sf{2(-3+m)-2=m-1\:\:[from(1)]}\\\\\longrightarrow\sf{-6+2m-2=m-1}\\\\\longrightarrow\sf{-8+2m=m-1}\\\\\longrightarrow\sf{2m-m=-1+8}\\\\\longrightarrow\bf{m=7}\end{lgathered}
⟶
m−1
r−1
=
2
1
⟶2(r−1)=1(m−1)
⟶2r−2=m−1
⟶2(−3+m)−2=m−1[from(1)]
⟶−6+2m−2=m−1
⟶−8+2m=m−1
⟶2m−m=−1+8
⟶m=7
∴ Putting the value of m in equation (1),we get;
\begin{lgathered}\longrightarrow\sf{r=-3+7}\\\\\longrightarrow\bf{r=4}\end{lgathered}
⟶r=−3+7
⟶r=4
Thus;
\boxed{\sf{The\:fraction\:becomes=\frac{r}{m}=\boxed{\bf{\frac{4}{7} }}}}
Thefractionbecomes=
m
r
=
7
4