The sum of squares of first n natural numbers is given by n(n+1)(2n+1)/6 . Find the sum of squares of the first 10 natural numbers.
Answers
We will discuss here how to find the sum of the squares of first n natural numbers.
We will discuss here how to find the sum of the squares of first n natural numbers.Let us assume the required sum = S
We will discuss here how to find the sum of the squares of first n natural numbers.Let us assume the required sum = STherefore, S = 122 + 222 + 322 + 422 + 522 + ................... + n22
We will discuss here how to find the sum of the squares of first n natural numbers.Let us assume the required sum = STherefore, S = 122 + 222 + 322 + 422 + 522 + ................... + n22Now, we will use the below identity to find the value of S:
We will discuss here how to find the sum of the squares of first n natural numbers.Let us assume the required sum = STherefore, S = 122 + 222 + 322 + 422 + 522 + ................... + n22Now, we will use the below identity to find the value of S:n33 - (n - 1)33 = 3n22 - 3n + 1
We will discuss here how to find the sum of the squares of first n natural numbers.Let us assume the required sum = STherefore, S = 122 + 222 + 322 + 422 + 522 + ................... + n22Now, we will use the below identity to find the value of S:n33 - (n - 1)33 = 3n22 - 3n + 1Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get
We will discuss here how to find the sum of the squares of first n natural numbers.Let us assume the required sum = STherefore, S = 122 + 222 + 322 + 422 + 522 + ................... + n22Now, we will use the below identity to find the value of S:n33 - (n - 1)33 = 3n22 - 3n + 1Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get 133 - 033 = 3 . 122 - 3 ∙ 1 + 1
We will discuss here how to find the sum of the squares of first n natural numbers.Let us assume the required sum = STherefore, S = 122 + 222 + 322 + 422 + 522 + ................... + n22Now, we will use the below identity to find the value of S:n33 - (n - 1)33 = 3n22 - 3n + 1Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get 133 - 033 = 3 . 122 - 3 ∙ 1 + 1 233 - 133 = 3 . 222 - 3 ∙ 2 + 1
We will discuss here how to find the sum of the squares of first n natural numbers.Let us assume the required sum = STherefore, S = 122 + 222 + 322 + 422 + 522 + ................... + n22Now, we will use the below identity to find the value of S:n33 - (n - 1)33 = 3n22 - 3n + 1Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get 133 - 033 = 3 . 122 - 3 ∙ 1 + 1 233 - 133 = 3 . 222 - 3 ∙ 2 + 1 333 - 233 = 3 . 322 - 3 ∙ 3 + 1
We will discuss here how to find the sum of the squares of first n natural numbers.Let us assume the required sum = STherefore, S = 122 + 222 + 322 + 422 + 522 + ................... + n22Now, we will use the below identity to find the value of S:n33 - (n - 1)33 = 3n22 - 3n + 1Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get 133 - 033 = 3 . 122 - 3 ∙ 1 + 1 233 - 133 = 3 . 222 - 3 ∙ 2 + 1 333 - 233 = 3 . 322 - 3 ∙ 3 + 1 433 - 333 = 3 . 422 - 3 ∙ 4 + 1
We will discuss here how to find the sum of the squares of first n natural numbers.Let us assume the required sum = STherefore, S = 122 + 222 + 322 + 422 + 522 + ................... + n22Now, we will use the below identity to find the value of S:n33 - (n - 1)33 = 3n22 - 3n + 1Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get 133 - 033 = 3 . 122 - 3 ∙ 1 + 1 233 - 133 = 3 . 222 - 3 ∙ 2 + 1 333 - 233 = 3 . 322 - 3 ∙ 3 + 1 433 - 333 = 3 . 422 - 3 ∙ 4 + 1 ......................................
We will discuss here how to find the sum of the squares of first n natural numbers.Let us assume the required sum = STherefore, S = 122 + 222 + 322 + 422 + 522 + ................... + n22Now, we will use the below identity to find the value of S:n33 - (n - 1)33 = 3n22 - 3n + 1Substituting, n = 1, 2, 3, 4, 5, ............., n in the above identity, we get 133 - 033 = 3 . 122 - 3 ∙ 1 + 1 233 - 133 = 3 . 222 - 3 ∙ 2 + 1 333 - 233 = 3 . 322 - 3 ∙ 3 + 1 433 - 333 = 3 . 422 - 3 ∙ 4 + 1 ...................................... n33 - (n - 1)