Math, asked by prithvinaik267, 5 hours ago

the sum of the 4th. & 8th term of an AP is 24 and the sum of 6th &10th term is 44 find the first 3 terms of AP​

Answers

Answered by Anonymous
44

STEP-BY-STEP EXPLANATION:

.

 As \: we \:  know \: that, \begin{cases}{a}_{n} = a + (n - 1)d \end{cases} \\

\longrightarrow {a}_{4} = a + (4 - 1)d \:   \\  \\ \longrightarrow {a}_{4} = a + 3d \:  \:  \: ...(1) \\

\longrightarrow {a}_{8} = a + (8 - 1)d \:  \\  \\ \longrightarrow {a}_{8} = a + 7d \:  \:  \: ...(2) \\

Adding \:  both  \: 1  \: and  \: 2, \\

\longrightarrow {a}_{4} +  {a}_{8} = a + 3d + a + 7d \\

\longrightarrow 24 = 2a + 10d  \:  \:  \:...(3) \  \:  \:  \: \because{a}_{4}  + {a}_{8} = 24\\

Similarly, \\

\longrightarrow {a}_{6} = a + (6 - 1)d \:   \\  \\ \longrightarrow {a}_{6} = a + 5d \:  \:  \: ...(4) \\

\longrightarrow {a}_{10} = a + (10 - 1)d \:  \\  \\ \longrightarrow {a}_{10} = a + 9d \:  \:  \: ...(5) \:  \:  \\

Adding \:  both  \: 4  \: and  \: 5, \\

\longrightarrow {a}_{6} +  {a}_{10} = a + 5d + a + 9d \\

\longrightarrow 44 = 2a + 14d  \:  \:  \:...(6) \  \:  \:  \: \because{a}_{6}  + {a}_{10} = 44\\

Substract  \: 3  \: from \:  6, \\

\longrightarrow 44  - 24= 2a + 14d - 2a - 10d  \\

\longrightarrow 20=  4d  \\

\longrightarrow d = 5  \\

Substituting  \: this  \: value \:  d  \: in  \: 3, \\

\longrightarrow 24 = 2a + 10d  \:  \:  \:...(3) \\

\longrightarrow 24 = 2a + 10(5)   \\

\longrightarrow 24 = 2a + 50  \\

\longrightarrow 2a = 24 - 50 \\

\longrightarrow a =  - 13 \\

\longrightarrow {a}_{2} =  - 13 + (2 - 1)5 \:   \\  \\ \longrightarrow {a}_{2} =  - 13 + 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \longrightarrow {a}_{2} =  - 8 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\

\longrightarrow {a}_{3} =  - 13 + (3 - 1)5 \:   \\  \\ \longrightarrow {a}_{3} =  - 13 + 2(5)  \:  \:  \:  \:  \:  \:  \:   \: \:  \\  \\  \longrightarrow {a}_{3} =  - 3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\

REQUIRED ANSWER,

.

  • The first 3 terms in AP is -13, -8 and -3.

Answered by MichWorldCutiestGirl
91

QuEsTiOn,

  • The sum of the 4th. & 8th term of an AP is 24 and the sum of 6th &10th term is 44 find the first 3 terms of AP.

To FiNd,

  •  \color{red} \boxed{ \sf \: the \:  first \:  3  \: terms  \: of \:  AP}

SoLuTiOn,

 \sf \: As \: we \:  know \: that, \begin{cases}{a}_{n} = a + (n - 1)d \end{cases} \\

\sf \: \longrightarrow {a}_{4} = a + (4 - 1)d \:   \\  \\ \longrightarrow {a}_{4} = a + 3d \:  \:  \: ...(1) \\

\sf \: \longrightarrow {a}_{8} = a + (8 - 1)d \:  \\  \\ \longrightarrow {a}_{8} = a + 7d \:  \:  \: ...(2) \\

\sf \: Adding \:  both  \: 1  \: and  \: 2, \\

\sf \: \longrightarrow {a}_{4} +  {a}_{8} = a + 3d + a + 7d \\

\sf \: \longrightarrow 24 = 2a + 10d  \:  \:  \:...(3) \  \:  \:  \: \because{a}_{4}  + {a}_{8} = 24\\

Similarly, \\

\sf \: \longrightarrow {a}_{6} = a + (6 - 1)d \:   \\  \\ \longrightarrow {a}_{6} = a + 5d \:  \:  \: ...(4) \\

\sf \: \longrightarrow {a}_{10} = a + (10 - 1)d \:  \\  \\ \longrightarrow {a}_{10} = a + 9d \:  \:  \: ...(5) \:  \:  \\

Adding \:  both  \: 4  \: and  \: 5, \\

\sf \: \longrightarrow {a}_{6} +  {a}_{10} = a + 5d + a + 9d \\

\sf \: \longrightarrow 44 = 2a + 14d  \:  \:  \:...(6) \  \:  \:  \: \because{a}_{6}  + {a}_{10} = 44\\

\sf \: Substract  \: 3  \: from \:  6, \\

\sf \: \longrightarrow 44  - 24= 2a + 14d - 2a - 10d  \\

\sf \: \longrightarrow 20=  4d  \\

\sf \: \longrightarrow d = 5  \\

\sf \: Substituting  \: this  \: value \:  d  \: in  \: 3, \\

\sf \: \longrightarrow 24 = 2a + 10d  \:  \:  \:...(3) \\

\sf \: \longrightarrow 24 = 2a + 10(5)   \\

\sf \: \longrightarrow 24 = 2a + 50  \\

\sf \: \longrightarrow 2a = 24 - 50 \\

\sf \: \longrightarrow a =  - 13 \\

\sf \: \longrightarrow {a}_{2} =  - 13 + (2 - 1)5 \:   \\  \\ \longrightarrow {a}_{2} =  - 13 + 5 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \longrightarrow {a}_{2} =  - 8 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\

\sf \: \longrightarrow {a}_{3} =  - 13 + (3 - 1)5 \:   \\  \\\sf \:  \longrightarrow {a}_{3} =  - 13 + 2(5)  \:  \:  \:  \:  \:  \:  \:   \: \:  \\  \\ \sf \:  \longrightarrow {a}_{3} =  - 3 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\

FiNaL AnSwEr,

 \color{blue} \boxed{ \sf \: The  \: first  \: 3  \: terms  \: in \:  AP \:  is  \: -13, \:  -8  \: and \:  -3.}

Hope you get your AnSwEr.

Similar questions