Math, asked by HarshAnandannair, 10 months ago

The sum of the digit of a
2-digit number is 7. If the
digit's are reversed, the new
number is increased by 3,
equal 4 times the original
number. Find the original
number.​

Answers

Answered by shoovamjena15
2

Step-by-step explanation:

Let the one's place number be x

The ten's place number =10x

The sum of these number =7

So,the original number=1*10+x*1

=10+x

Now, the numbers are reversed

So, the new number =10*x+1*1=10x+1

According to the question, the new

number is increased by 3,

equal 4 times the original

number

So, 10x+1+3=4(10+x)

=>10x+4=40+4x

=>10x-4x=40-4

=>6x=36

=>x=36/6=6

One's place=6

Ten's place=1

Therefore the original number is 16.

Answered by Anonymous
0

Let x be the digit at ten's place and y be the digit at unit place.

 \sf \therefore \: The  \: number \:  =  \: 10 \: x + y

 \sf \: Sum  \: of  \: its  \: digits = x + y

 \sf \: On \:  reversing \:  the  \: digits,

 \sf \: The \:  number \:  becomes  \: 10  \: y + x.

 \sf \: A/Q, \\   \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x + y =  7  \\  \sf \: and,  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \:  \: 10y + x + 3 = 4(10x + y) \\  \\  \sf \red{x + y = 7 }\:  \:  \:   \:  \:   \\  \sf \: 10y + x + 3 = 4(10x + y) \\  \sf \implies \: 10y + x + 3 = 40x + 4y \\  \sf \implies \: 10y - 4y + x - 40x = 3 \\  \sf \implies \red{6y - 39x = 3} \:  \:  \:  \:  \blue{} \\  \\  \\ \sf \: x + y = 7 \:  \:   \red{\times 6} \\   \sf  \: 6x + 6y = 42 \:  \:  \:  \:  \blue{eq.(i)}\\ \\  \sf \: 6y - 39x = 3 \:  \:  \red{ \times 1} \\   \sf \: 6y - 39x = 3 \:  \:  \blue{...eq.(ii)} \\  \\  \sf \: on \: solving \: we \: get \:  -  \\  \sf \: x = 1 \:  \:  \:  \:  \:  \:  \: \: y = 6 \\  \\  \sf \therefore \: Required  \: number = 10x + y  \\  \sf \:  =  \: 10 \times 1 + 6 \\   \boxed{ \red{ \underline{ \sf \: =  16 \:  \: ....(ans) }}}

Similar questions