Math, asked by paramjit387, 2 months ago

the sum of the digits in a 2-digit number is 10. When we reverse the digits ,then the difference of this number and the original number become 36. find the number​

Answers

Answered by Saby123
34

Question :

• The sum of the digits in a 2-digit number is 10.

• When we reverse the digits ,then the difference of this number and the original number become 36.

Find the number

Solution :

Let us assume that the original number is xy .

The sum of the digits of this two digit number is 10.

> x + y = 10

On reversing the digits , the new number becomes yx .

The difference between the new and original numbers is 36.

> yx - xy = 36

> 10y + x - 10x - y = 36

> 9y - 9x = 36

> y - x = 4

Adding this with the first equation

• x + y = 10

• y - x = 4

> 2y = 14

> y = 7

> x = 3.

Answer - The required number is 37.

______________________________________

Answered by MяMαgıcıαη
76
  • \LARGE\boxed{\sf{\blue{Number = 37}}}

Explanation :

\underline{\red{\bigstar}{\underline{\bf{Question}}}\red{\bigstar}}

  • The sum of the digits in a 2 - digit number is 10. When we reverse the digits , then the difference of this number and the original number become 36. Find the number.

\underline{\red{\bigstar}{\underline{\bf{Solution}}}\red{\bigstar}}

  • Let the one's digit = x
  • And, ten's digit = y

According to first condition :-

\qquad\leadsto\quad\sf x + y = 10 \qquad\qquad\bigg\lgroup \sf{eq^{n}} \:(1) \bigg\rgroup

According to second condition :-

\qquad\leadsto\quad\sf Original\:number = 10y + x

\qquad\leadsto\quad\sf Reversed\:number = 10x + y

A/q,

\qquad\leadsto\quad\sf (10x + y) - (10y + x) = 36

\qquad\leadsto\quad\sf 10x + y - 10y - x = 36

\qquad\leadsto\quad\sf 10x - x - 10y + y = 36

\qquad\leadsto\quad\sf 9x - 9y = 36

\qquad\leadsto\quad\sf 9(x - y) = 36

\qquad\leadsto\quad\sf x - y = \dfrac{36}{9}

\qquad\leadsto\quad\sf x - y = \dfrac{\cancel{36}}{\cancel{9}}

\qquad\leadsto\quad\sf x - y = 4 \qquad\qquad\:\bigg\lgroup \sf{eq^{n}} \:(2) \bigg\rgroup

Adding eqⁿ (1) and eqⁿ (2) :-

\qquad\rightarrow\quad\sf (x + y) + (x - y) = 10 + 4

\qquad\rightarrow\quad\sf x + y + x - y = 14

\qquad\rightarrow\quad\sf x + x + y - y = 14

\qquad\rightarrow\quad\sf 2x + \cancel{y} - \cancel{y} = 14

\qquad\rightarrow\quad\sf 2x = 14

\qquad\rightarrow\quad\sf x = \dfrac{14}{2}

\qquad\rightarrow\quad\sf x = \dfrac{\cancel{14}}{\cancel{2}}

\qquad\rightarrow\quad\bf{x = \red{7}}

Putting value of x in eqⁿ (1) :-

\qquad\rightarrow\quad\sf 7 + y = 10

\qquad\rightarrow\quad\sf y = 10 - 7

\qquad\rightarrow\quad\bf{y = \red{3}}

Hence,

\longrightarrow\qquad\sf Number = 10y + x

Putting value of x and y :-

\longrightarrow\qquad\sf Number = 10\:\times\:3 + 7

\longrightarrow\qquad\sf Number = 30 + 7

\longrightarrow\qquad\bf{Number = \red{37}}

\quad\red{\therefore}\:{\underline{\rm{Hence,\:number\:is\:\bf{37}\:\rm{respectively}.}}}

Similar questions