The sum of the digits of a two digit number is 12. The number obtained by reversing the digits is 36 greater than the original number. Find the number
Answers
Answer:
The Original Number is 48.
Step-by-step explanation:
Given :
Sum of the digits is 12.
The number obtained by reversing the digits is 36 greater than the original number.
To find :
The Original Number
Solution :
Let the digits be -
- Units Place as x
- Tens Place as 10(12 - x)
⇒ 10(12 - x) + x
⇒ 120 - 10x + x
⇒ 120 - 9x .........[Original Number]
Let the digits be -
- Units Place as (12 - x)
- Tens Place as 10(x)
⇒ 10(x) + (12 - x)
⇒ 10x + 12 - x
⇒ 9x + 12 ........[Number With Reversed Digits]
The number obtained by reversing the digits is 36 greater than the original number.
⇒ 9x + 12 = (120 - 9x) + 36
⇒ 9x + 12 = 156 - 9x
⇒ 9x + 9x = 156 - 12
⇒ 18x = 144
⇒ x = 144/18
⇒ x = 8
★ Value of 120 - 9x
⇒ 120 - 9(8)
⇒ 120 - 72
⇒ 48
Original Number = 48
The Original Number is 48.
Answer:
Step-by-step explanation:
Given :-
The sum of the digits of a two digit number is 12.
The number obtained by reversing the digits is 36 greater than the original number.
To Find :-
The Number
Solution :-
Let the unit digit = x
And the tens digit = 12 - x
Original number = 10(12 - x) + x
Reversed Number = 10(x) + 12 - x
According to the Question,
⇒ 10(12 - x) + x - 36 = 10x + 12 - x
⇒ 120 – 10x + x - 36 = 10x + 12 - x
⇒ -10x + x - 10x + x = 12 – 120 – 36
⇒ -18x = -144
⇒ 18x = 144
⇒ x = 144/18
⇒ x = 8x
Unit digit = x = 8
Tens digit = 12 – 8 = 4
The number = 10(4) + 8 = 48
Hence, the Number is 48.