Math, asked by anshuman3patra, 1 year ago

The sum of the digits of a two digit number is 15.If the number formed by reversing the digits is less than the original number by 27, find the original number.

Answers

Answered by MBE1
0

x+y=15-----------eq:1

10x+y be the number given

reversing be 10y+x

10x+y-(10y+x)=27

=9x-9y=27

eq:1×9. eq1+eq2

9x+9y=135

+ 9x-9y =27

-----------------

18x=162

x=9

substitute x value in eq1

9+y=15

y=6

Answered by llTheUnkownStarll
2

Let the unit's place = x

The ten's place = 15

 \bull \:  \sf{Original \:  Number  =10(15−x)+x}

 \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \sf   =150−10x+x

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \: =150−9x

By reversing the digits, we get

 \sf {New \: number=10x+(15−x)}

 \:  \: \:  \:  \:  \: \:  \:  \:   \sf=10x+15−x

 \:  \:  \:  \:  \:  \:  \:   \:    \:  = \boxed{ \sf 9x−15} \blue\bigstar

According to the question

 \sf \: Original \:  number−New \:  number=27

: \implies \sf \: 150−9x−9x+15=27

: \implies \sf{−18x+165=27}

: \implies \sf{−18x=27−165=(−108)}

 : \implies \sf{x= \frac{−18}{−108}=6}

 \sf \: original  \: number=150−9x

 \:  \: \:  \:  \:  \:  \: \:  \:  \:  \:  \: \:  \:  \sf  = 150−9×6

\:  \: \:  \:  \:  \:  \: \:  \:  \:  \:  \: \:  \: \sf  = 150- 54

\:  \: \:  \:  \:  \:  \: \:  \:  \:  \:  \: \:  \:  = \underline{\boxed{\frak{96}}} \: \pink{ \bigstar}

  • Hence, the original number 96.

Thank you!

@itzshivani

Similar questions