the sum of the digits of a two-digit number is 17 the new number formed by receiving the digital is greater than the original number by 9 find the original number
Answers
CORRECT QUESTION:
Q: The sum of the digits of a two-digit number is 17. The new number formed by reversing the digits is greater than the original number by 9. Find the original number.
Answer:
- The original number = 89
Step-by-step explanation:
Let us assume:
- Tens digit of a number be A.
- Ones digit of a number be B.
Number formed:
- Original number = 10A + B
- Reversed number = 10B + A
Given that:
- The sum of the digits of a two-digit number is 17.
⇒ A + B = 17
⇒ A = 17 - B _____(i)
- The new number formed by reversing the digits is greater than the original number by 9.
⇒ 10A + B + 9 = 10B + A _____(ii)
To Find:
- The original number.
Finding the values of A and B:
- In equation (ii).
⇒ 10A + B + 9 = 10B + A
- Substituting the value of A from eqⁿ (i).
⇒ 10(17 - B) + B + 9 = 10B + (17 - B)
⇒ 170 - 10B + B + 9 = 10B + 17 - B
⇒ - 10B + B - 10B + B = 17 - 170 - 9
⇒ - 18B = - 162
- Minus sign cancelled both sides.
⇒ 18B = 162
⇒ B = 162/18
⇒ B = 9
- Now, In equation (i).
⇒ A = 17 - B
- Substituting the value of B.
⇒ A = 17 - 9
⇒ A = 8
Finding the original number:
⇒ Original number = 10A + B
- Substituting the values of A and B.
⇒ Original number = 10(8) + 9
⇒ Original number = 80 + 9
⇒ Original number = 89
Answer:
Given :-
- The sum of the digits of a two digit number is 17. The new number formed by reversing the digits Is greater than the original number by 9.
To Find :-
- What is the original number.
Solution :-
Let, the digits at ten place be x
And, the digits at unit place will be y
Then, the original number is 10x + y
And, the reversed number is 10y + x
➦ x + y = 17 -------- (Equation no 1)
Again,
⇒ 10x + y + 9 = 10y + x
⇒ 10x - x - 10y + y = - 9
⇒ 9x - 9y = - 9
➦ x - y = - 1 --------- (Equation no 2)
Now, by adding the equation no (1) and (2) we get,
⇒ x + y + x - y = 17 + (- 1)
⇒ x + x + y - y = 17 - 1
⇒ 2x = 17 - 1
⇒ 2x = 16
⇒ x = 16/2
➠ x = 8
Again, by putting x = 8 in the equation no (1) we get,
↦ x + y = 17
↦ 8 + y = 17
↦ y = 17 - 8
➠ y = 9
∴ The original number is 89 .