the sum of the digits of a two digit number is 9.also nine times this number is twice the number obtained by reversing the order of the digits.find the no.
Answers
Answered by
7
let the no.s be x and y
x + y = 9 x = 9-y eq.1
ATQ
9(10x + y) = 2 ( 10y+x)
90x + 9y = 20y + 2x
88x = 11y
8x = y
8(9-y) = y
72 - 8y = y
72 = 9y
y = 8. eq.2
x + y = 9. From eq.1
x + 8 = 9
x = 1
So the no.s are 18 and 81
x + y = 9 x = 9-y eq.1
ATQ
9(10x + y) = 2 ( 10y+x)
90x + 9y = 20y + 2x
88x = 11y
8x = y
8(9-y) = y
72 - 8y = y
72 = 9y
y = 8. eq.2
x + y = 9. From eq.1
x + 8 = 9
x = 1
So the no.s are 18 and 81
Snath1:
you have not mentioned that x and y represent what?
Answered by
4
Assumption
Also,
Situation,
p + n = 9
Also,
9(10n + p) = 2(10p + n)
Therefore,
p + n = 9
p = 9 - n
Hence,
9(10n + p) = 2(10p + n)
90n + 9p = 20p + 2n
88n = 11p
88n = 11(9 - n)
88n = 99 - 11n
99n = 99
n = 1
p = 9 - 1
p = 8
Therefore,
Number = 10n + p
10 + 8 = 18
Similar questions