Math, asked by spaceshipdrama, 5 hours ago

The sum of the digits of a two-digit number is 9. If the new number formed by reversing the digits is greater than the original number by 63, then find the original number.​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:Let-\begin{cases} &\sf{digit \: at \: tens \: place \: be \: y} \\ &\sf{digits \: at \: ones \: place \: be \: x} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{number \: formed = 10y + x} \\ &\sf{reverse \: number = 10 x + y} \end{cases}\end{gathered}\end{gathered}

Now, According to first condition

The sum of the digits of a two-digit number is 9.

\rm :\longmapsto\:x + y = 9

\rm :\longmapsto\: \boxed{ \bf{ \: x = 9 - y }}-  -  -  - (1)

According to second condition

The new number formed by reversing the digits is greater than the original number by 63.

\rm :\longmapsto\:10x + y = 63 + 10y + x

\rm :\longmapsto\:10x + y  - 10y - x= 63

\rm :\longmapsto\:9x - 9y = 63

\rm :\longmapsto\:9(x - y) = 63

\rm :\longmapsto\:x - y= 7

\rm :\longmapsto\:9 - y - y= 7

\rm :\longmapsto\:9 - 2y= 7

\rm :\longmapsto\: - 2y= 7 - 9

\rm :\longmapsto\: - 2y=  - 2

\bf\implies \:y = 1

On substituting y = 1 in equation (1), we get

\rm :\longmapsto\:x = 9 - 1

\bf\implies \:x = 8

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:So-\begin{cases} &\sf{digit \: at \: tens \: place \:  =  \: 1} \\ &\sf{digits \: at \: ones \: place \:  =  \: 8} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{number \: formed = 10y + x = 10 \times 1 + 8 = 18} \\ &\sf{reverse \: number = 10 x + y = 10 \times 8 + 1 = 81} \end{cases}\end{gathered}\end{gathered}

  • Hence, Number formed = 18

Alternative Method :-

\begin{gathered}\begin{gathered}\bf\: Let-\begin{cases} &\sf{digit \: at \: tens \: place \: be \: x} \\ &\sf{digits \: at \: ones \: place \: be \: 9 - x} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{number \: formed = 10 \times x + 9 - x = 9x + 9} \\ &\sf{reverse \: number = 10 (9 - x) + x  = 90 - 9x} \end{cases}\end{gathered}\end{gathered}

According to statement,

The new number formed by reversing the digits is greater than the original number by 63.

\rm :\longmapsto\:90 - 9x = 63 + 9x + 9

\rm :\longmapsto\:90 - 9x = 72 + 9x

\rm :\longmapsto\: - 9x- 9x = 72 - 90

\rm :\longmapsto\: - 18x =  - 18

\bf\implies \:x = 1

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:So-\begin{cases} &\sf{digit \: at \: tens \: place \:  =  \: 1} \\ &\sf{digits \: at \: ones \: place \:  =  \: 8} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf\: So-\begin{cases} &\sf{number \: formed =  18} \\ &\sf{reverse \: number  = 81} \end{cases}\end{gathered}\end{gathered}

  • Hence, Number formed = 18
Similar questions
Math, 8 months ago
Math, 8 months ago