Math, asked by ahirwarjeetu4340, 8 months ago

The sum of the digits of a two digit number is 9. The number obtained by reversing the order of the digit of the given number exeeds by 27. Find the given number

Answers

Answered by TheVenomGirl
5

AnSwer:

Let the two digit number be 10x+y.

According to the question,

Sum of the 2 digit number is 9. So,

 \sf \longmapsto \:  \: x+y=9 -  -  -  - (1)

Also,

Number obtained by reversing the order of the digit of the given number exeeds by 27.

So,

 \sf \longmapsto \:  \:10y+x=10x+y+27 \\  \\  \sf \longmapsto \:  \:9x - 9y= - 27 \\  \\   \sf \longmapsto \:  \:x - y= - 3 -  -  -  - (2)

Now,

Add eqn (1) and (2),

 \sf \: x+y=9 \\  \sf \: x - y= - 3

_______________

+ \:  \:  \:  -  \:  \:  \: =  \:  \:  -

 \longmapsto \sf \:  \: 2x=6 \\ \\  \longmapsto \sf \:  \: x=3 \\ \\  \sf \:  and, \\ \\   \longmapsto \sf \:  \:3+y=9 \\ \\  \longmapsto \sf \:  \: y=6

The number is =

 \longmapsto \sf \:  \: 10x+y \\  \\\longmapsto \sf \:  \:10(3) + 6 \\  \\ \longmapsto \sf \:  \:30 + 6 \\  \\ \longmapsto \sf \:  \:36

Therefore, the number is 36.

Answered by InfiniteSoul
2

\sf{\huge{\mathfrak{\underline{\boxed{\pink{Solution}}}}}}

let the 2 Digit number be 10x + y

 \\

  • The sum of the digits of a two digit number is 9.

\sf{\bold{\purple{x + y = 9 ------(i)}}}

  • The number obtained by reversing the order of the digit of the given number exeeds by 27.

\\ \sf{10x + y = 10y + x - 27 }

\\ \sf{10x - x + y - 10y + 27 = 0 }

\\ \sf{9x - 9y = -27 }

\\ \sf{9( x - y ) = - 27 }

\\ \sf{ x - y = - 3 }

\\ \sf{\bold{\purple{x - y = -3 ----(ii)}}}

  • adding eq i and ii

☞x + y + x - y = 9 + ( - 3)

☞2x = 9 - 3

☞2x = 6

☞x = 3

\\ \sf{\bold{\boxed{\purple{x = 3 }}}}

  • value of y

☞ x + y = 9

☞3 + y = 9

☞y = 9 - 3

☞y = 6

\\ \sf{\bold{\boxed{\purple{y = 6  }}}}

  • required number :-

☞ 10x + y

☞10 x 3 + 6

☞30 + 6

☞36

\\ \sf{\bold{\boxed{\purple{\dag required\: number = \:36 }}}}

_________________❤

Similar questions