Math, asked by anshu8591, 1 year ago

The sum of the digits of a two digits number is 12.if the digits are revesed the new number is 12 less than twice the original number​

Answers

Answered by Anonymous
40

Let ten's digit be "M" and one's digit be "N".

The sum of digits of two digit number is 12.

According to question,

=> M + N = 12

=> M = 12 - N _____ (eq 1)

If digits are reversed the new number is 12 less than twice the original number.

Original number = 10M + N

Reversed number = 10N + M

According to question,

=> 10N + M = 2(10M + N) - 12

=> 10N + M = 20M + 2N - 12

=> 10N - 2N + M - 20M = - 12

=> 8N - 19M = - 12

=> 8N - 19(12 - N) = - 12

=> 8N - 228 + 19N = - 12

=> 27N = - 12 + 228

=> 27N = 216

=> N = 8

Put value of N in (eq 1)

=> M = 12 - 8

=> M = 4

Original number = 10M + N

=> 10(4) + 8

=> 48

Answered by Anonymous
19

ANSWER:-

Given:

The sum of the digits of a two digits number is 12. If the digits are reversed the new number is 12 less than twice the original number.

Solution:

Let the unit's digit be x &

Let the tens digit be y.

Sum of the digits of a two number is given to be 12.

Therefore,

x + y= 12

x= 12 -y...........(1)

Original number is 10x + y

Number obtained on reversing the digits= 10y+x

According to the question:

(10y + x) = 2(10x + y)-12

=) 10y + x = 20x + 2y-12

=) 10y-2y+ x -20x= -12

=) 8y -19x = -12

=) 8y -19(12-y)= -12 [using (1)]

=) 8y - 228+19y= -12

=) 27y -228= -12

=) 27y = -12 +228

=) 27y = 216

=) y= 216/27

=) y= 8

Now,

Putting the value of y in eq. (1);

x = 12 - 8

=) x= 4

Therefore,

The number is required is original number;

10x +y

=)10(4) + 8

=) 40 + 8

=) 48

Hope it helps ☺️

Similar questions