Math, asked by draxdara612, 4 months ago

The sum of the first 5 and first 10 terms respectively of an A.P. Are equal in magnitude but opposite in sign. Suppose the first term of the A.P. is 11. Find the second term.

Answers

Answered by Seafairy
55

Given :

  • Sum of first 5 terms and first 10 terms of an A.P are equal in magnitude but opposite in sign.
  • First term of an A.P is 11.

To Find :

  • Find Second term of A.P

Explanation :

  • It's given that first 5 terms and first 10 terms of an A.P are equal in magnitude but opposite in sign. hence,

\boxed{\sf{S_{(5)}=-S_{(10)}}}

  • Then we can find the value of second term of the A.P by equating the above 2 values in the formula of sum of n-th term of A.P.

Formula Applied :

\displaystyle{\underline{\boxed{\sf{S_{n}=\frac{n}{2}\[\left(2a+(n-1)d\right)\]}}}}

\displaystyle{\underline{\boxed{\sf{t_n = a+(n-1)d}}}}

  • a = First term of an A.P
  • d = Common difference
  • n = number of terms
  • Sn = Sum of n-th terms of an A.P
  • tn = n-th term of an A.P

Solution :

  • As by explanation equate the values of \sf{S_{(5)}} and \sf{-S_{(10)}}

\displaystyle {\sf{\implies \frac{5}{2}\[\left(2(11)+(5-1)d\right)\]= - \frac{10}{2}\[\left(2(11)+(10-1)d\right)\]}}

\displaystyle {\sf{\implies \frac{5}{\cancel{2}}\[\left(22+4d\right)\]= -\frac{10}{\cancel{2}}\[\left(22+9d\right)\]}}

\displaystyle {\sf{\implies 5\[\left(22+4d\right)\]= -10\[\left(22+9d\right)\]}}

\sf{\implies 110+20d = -220-90d}

\sf{\implies 90d +20d = -220-110}

\sf{\implies 110d = -330}

\displaystyle\sf{\implies d = \frac{-330}{110}}

\sf{\boxed{ \sf d = -3}}

_____________________________________________

  • Now substitute the values in the below formula to find the second term of the A.P

\displaystyle{\underline{\boxed{\sf{t_n = a+(n-1)d}}}}

\sf{\implies t _{(2)}= 11+(2-1)(-3)}

\sf{\implies t _{(2)}= 11+(1)(-3)}

\sf{\implies t _{(2)}= 11+(-3)}

\sf{\boxed{\sf t _{(2)}= 8}}

_____________________________________________

Verification :

  • As by given the sum of the first 5 and first 10 terms respectively of an A.P. Are equal in magnitude but opposite in sign.

\boxed{\sf{S_{(5)}=-S_{(10)}}}

\displaystyle {\sf{\implies \frac{5}{2}\[\left(2(11)+(5-1)(-3)\right)\]=  \frac{10}{2}\[\left(2(11)+(10-1)(-3)\right)}}

\displaystyle {\sf{\implies \frac{5}{2}\[\left(2(11)+(4)(-3)\right)\]= \frac{10}{2}\[\left(2(11)+(9)(-3)\right)}}

\displaystyle {\sf{\implies \frac{5}{2}\[\left(22+((-12)\right)\]= \frac{10}{2}\[\left(22+(-27)\right)}}

\displaystyle {\sf{\implies \frac{5}{2}\[\left(10\right)\]=  \frac{10}{2}\[\left(-5\right)}}

\displaystyle {\sf{\implies \frac{50}{2}=\frac{-50}{2}}}

\textsf{Hence Verified }

_____________________________________________

Required Answer :

Second term of the given A.P is \underline {\sf{-3}}

Similar questions