Math, asked by shikha6075, 10 months ago

The sum of the first five terms of an arithmetic sequence is 150 and the sum of the first ten terms is 550(a) what is the third term of the sequemce​

Answers

Answered by thamaraiselvi2000
1

Answer:

30

Step-by-step explanation:

150 = 5/2 (2a+4d)

550 = 5(2a+9d)

solve simultaneously

a= 10

d= 10

a is the first term

d is common difference

use the formula n/2(2a+(n-1)d)

Answered by silentlover45
2

\underline\mathfrak{Given:-}

  • \: \: \: \: \: Sum \: \: of \: \: first \: \: five \: \: terms \: \: of \: \: AP \: \: = \: \: {150}

  • \: \: \: \: \: Sum \: \: of \: \: first \: \: ten \: \: terms \: \: of \: \: AP \: \: = \: \: {550}

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: third \: \: terms \: \: of \: \: AP

\underline\mathfrak{Solutions:-}

\: \: \: \: \: \fbox{Sum \: \: = \: \: \frac{n}{2} \: {[{2a} \: + \: {(n \: - \: 1)} \: d]}}

  • \: \: \: \: \: Sum \: \: of \: \: first \: \: five \: \: terms \: \: of \: \: AP \: \: = \: \: {150}

\: \: \: \: \: \leadsto \: \: \dfrac{5}{2} \: {[{2a} \: + \: {(5 \: - \: 1)} \: d]} \: \: = \: \: {150}

\: \: \: \: \: \leadsto \: \: \dfrac{5}{2} \: {[{2a} \: + \: {4d}]} \: \: = \: \: {150}

\: \: \: \: \: \leadsto \: \: {5} \: {[{2a} \: + \: {4d}]} \: \: = \: \: {150} \: \times \: {2}

\: \: \: \: \: \leadsto \: \: {5} \: {[{2a} \: + \: {4d}]} \: \: = \: \: {300}

\: \: \: \: \: \leadsto \: \: {{2a} \: + \: {4d}} \: \: = \: \: \dfrac{300}{5}

\: \: \: \: \: \leadsto \: \: {{2a} \: + \: {4d}} \: \: = \: \: {60} \: \: \: \: \: {(1)}.

  • \: \: \: \: \: Sum \: \: of \: \: first \: \: ten \: \: terms \: \: of \: \: AP \: \: = \: \: {550}

\: \: \: \: \: \leadsto \: \: \dfrac{10}{2} \: {[{2a} \: + \: {(10 \: - \: 1)} \: d]} \: \: = \: \: {550}

\: \: \: \: \: \leadsto \: \: {5} \: {[{2a} \: + \: {9d}]} \: \: = \: \: {550}

\: \: \: \: \: \leadsto \: \: {{2a} \: + \: {9d}} \: \: = \: \: \dfrac{550}{5}

\: \: \: \: \: \leadsto \: \: {{2a} \: + \: {9d}} \: \: = \: \: {110} \: \: \: \: \: {(2)}.

  • \: \: \: \: \: Solving \: \: Eq. \: \: {(1)} \: \: and \: \: {(2)}. \: \: we \: \: get;

\: \: \: \: \: \leadsto \: {({2a} \: + \: {4d})} \: - \: {({2a} \: + \: {9d})} \: \: = \: \: {60} \: - {110}

\: \: \: \: \: \leadsto \: {2a} \: + \: {4d} \: - \: {2a} \: - \: {9d} \: \: = \: \: {60} \: -  \: {110}

\: \: \: \: \: \leadsto \: \: - \: {5d} \: \: = \: \: - {50}

\: \: \: \: \: \leadsto \: \: - \: {d} \: \: = \: \: - {10}

  • \: \: \: \: \: putting \: \: value. \: \: of \: \: in \: \: Eq \: {(1)}.

\: \: \: \: \: \leadsto \: \: {{2a} \: + \: {4d}} \: \: = \: \: {60}

\: \: \: \: \: \leadsto \: \: {{2a} \: + \: {4} \: \times \: {10}} \: \: = \: \: {60}

\: \: \: \: \: \leadsto \: \: {2a} \: + \: {40} \: \: = \: \: {60}

\: \: \: \: \: \leadsto \: \: {2a} \: \: = \: \: {60} \: + \: {40}

\: \: \: \: \: \leadsto \: \: {2a} \: \: = \: \: {20}

\: \: \: \: \: \leadsto \: \: {a} \: \: = \: \: {10}

  • \: \: \: \: \: So, \: \: third \: \: terms \: \: of \: \: AP \: \: = \: \: {a} \: + \: {2d}

\: \: \: \: \: \leadsto \: \: {10} \: + \: {{2} \: \times  \: {10}}

\: \: \: \: \: \leadsto \: \: {10} \: + \: {30}

\: \: \: \: \: Hence, \: \: the \: \: third \: \: terms \: \: of \: \: AP \: \ is \: \: {30}.

_________________________________

Similar questions