Math, asked by mohdalishamsi4979, 11 months ago

The sum of the first n terms of an A.P. is given by Sn = 2n2 + 5n , find the nth term of the A.P.

Answers

Answered by BrainlyConqueror0901
10

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{A.P=7,11,15,...}}}

\green{\tt{\therefore{nth\:term=3+4n}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Fiven :}} \\  \tt:   \implies Sum \: of \: n \: terms( s_{n}) = {2n}^{2}  + 5n \\  \\ \red{\underline \bold{To \: find :}}\\  \tt:  \implies A.P= ? \\  \\ \tt:  \implies n th \:term \: of \: A.P= ?

• According to given question :

  \tt \circ \:  s_{n}   = 2 {n}^{2}  + 5n \\  \\  \tt \circ \: n = 1,2,3.....\\  \\ \bold{As \: we \: know \: that} \\  \tt:  \implies  s_{1} = 2 \times {1}^{2}  + 5 \times 1 \\  \\ \tt:  \implies  s_{1} =2 + 5 \\  \\  \green{\tt:  \implies  s_{1} =7 =  a_{1}} \\  \\ \bold{For \:  s_{2}} \\  \tt:  \implies  s_{2} = 2 \times {2}^{2}  + 5\times 2 \\  \\ \tt:  \implies  s_{2} =8 + 10 \\  \\  \green{\tt:  \implies  s_{2} =18}\\  \\  \bold{for \:  a_{2}} \\  \tt:  \implies   a_{2} =  s_{2} -  s_{1} \\  \\ \tt:  \implies   a_{2} =18 - 7 \\  \\ \tt:  \implies   a_{2} = 11 \\  \\  \bold{For \: common \: difference} \\  \tt:  \implies Common \: difference =  a_{2} -  a_{1} \\  \\ \tt:  \implies Common \: difference =11 - 7 \\   \\  \green{\tt:  \implies Common \: difference =4} \\  \\   \tt\circ \: First \: term = 7 \\  \\  \tt \circ \: Common \: difference = 4\\   \\  \green{  \tt\therefore A.P = 7,11,15,....}

 \bold{As \: we \: know \: that} \\  \tt:  \implies  a_{n}  = a  + (n - 1)d \\  \\ \tt:  \implies  a_{n}  =7 + (n-1) \times 4 \\  \\ \tt:  \implies  a_{n}  =7+ 4n-4 \\  \\  \green{\tt:  \implies  a_{n}  =3+4n}

Answered by Saby123
5

</p><p>\tt{\huge{\pink{Hello!!! }}}

</p><p>\tt{\red{Given \: - }}

 \tt{ \orange{S_{n} \:  = 3 {n}^{2}  + 2n \: }}

Let there be :

  • a is the first term.

  • d is the common difference between any two successive terms.

Hence,

 \tt{ \purple{ \frac{n}{2} (2a \:  +  \: (n - 1)d \: ) \:  =  n( 3 n  + 2 \: )}}

 \tt{ \red{S_{1} \:  = 3 {1}^{2}  + 2 \: = \: 5}}

 \tt{ \pink{S_{2} \:  = 3 {2}^{2}  + 4\: = \: 16}}

 \tt{\blue{\implies {d = S_{2} - S_{1} = 9 }}}

 \tt{ \green{A_{n} \:  = 5  + n (14)\: = \: 5 + 14n}}.........(A)

Similar questions