The sum of the first n terms of an AP is ( 3n^2 + 6n ). Find the nth term and the 15th term of this AP.
Answers
Answered by
9
Hope you like my process
=======================
Formula to be used
=-=-=-=-=-=-=-=-=-=-=-
___________________________
Given
-----------
thus
comparing we get
----------------------------
=> a = 9
=> d = 6
____________________
Hence .
=>15th term = 3 +6(15)= 3+90 =93
===========================
Hope this is ur required answer
Proud to help u.
=======================
Formula to be used
=-=-=-=-=-=-=-=-=-=-=-
___________________________
Given
-----------
thus
comparing we get
----------------------------
=> a = 9
=> d = 6
____________________
Hence .
=>15th term = 3 +6(15)= 3+90 =93
===========================
Hope this is ur required answer
Proud to help u.
Answered by
18
Given, Sum of first n terms of an AP is Sn = 3n^2 + 6n.
When n = 1:
⇒ S1 = 3(1)^2 + 6(1)
= 3 + 6
= 9.
When n = 2:
⇒ S2 = 3(2)^2 + 6(2)
= 12 + 12
= 24.
First term, a1 = 9.
Second term, a2 = 24 - 9
= 15.
Common difference d = 15 - 9 = 6.
nth term of the AP:
⇒ an = a + (n - 1) * d
= 9 + (n - 1) * 6
= 9 + 6n - 6
= 6n + 3.
15th term of the AP:
⇒ a15 = a + (15 - 1) * d
= 9 + (15 - 1) * 6
= 9 + 84
= 93.
Therefore, the nth term of the AP is 6n + 3 and 15th term of the AP is 93.
Hope this helps!
Similar questions