Math, asked by Amandeepjaat1491, 1 year ago

The sum of the five consecutive numbers is 270 what is the sum of second and fif4th h numbers

Answers

Answered by dishabucha
0

Answer:

Step-by-step explanation:

Let the 5 consecutive terms be

x, x+1 , x+2 , x+3 , x+4

A to q

X + x +1 + x + 2+ x + 3 +x + 4 = 270

5x + 10 = 270

5x = 270-10

5x = 260

X = 260 / 5 = 52

1st no. = 52

2nd = 52 + 1 = 53

3rd = 52 + 2 = 54

4th = 52 +3 = 55

5th = 52 + 4 = 56

Sum of 2nd and 4th no. = 53 + 55

= 108

Hope it helps uh

Plz mark as brainliest

Answered by Anonymous
0

\large{\green{\bold{\underline{Let:}}}}

 \sf \: The \: five \: numbers \: be \: x, \: x+1, \: x+2, \: x+3 \: and \: x+4

\large{\red{\bold{\underline{Then:}}}}

\large{\orange{\bold{\underline{According \: To \: Question:}}}}

\rightarrow \sf \: x + (x+1) + (x+2) + (x+3) + (x+4) = 270 \\ \\ \rightarrow \sf \: x + x+1 + x+2 + x+3 + x+4 = 270 \\  \\ \rightarrow \sf \: 5x + 10 = 270 \\  \\ \rightarrow \sf \: 5x = 270 - 10 \\  \\  \rightarrow \sf \: 5x = 260 \\  \\ \rightarrow \sf \: x =  \frac{ \cancel260}{ \cancel5} \\  \\ \rightarrow \sf \: x = 52

\large{\red{\bold{\underline{Then:}}}}

 \sf \: Numbers \: are \: 52, \: 52+1, \: 52+2, \\ \sf \: 52+3 \: and \: 52+4.

\large{\blue{\bold{\underline{Finally:}}}}

 \sf \: Five \: consecutive \: numbers \: are \: 52, \: 53, \: 54, \\ \sf \: 55 \: and \: 56.

\large{\pink{\bold{\underline{But:}}}}

 \sf \: We \: need \: to \: find \: addition \: of \: 2nd \\ \sf \: and \: 5th \: number.

 \rightarrow \sf \: 53 + 56 \\ \rightarrow \sf \: 109

\large{\green{\bold{\underline{Hence:}}}}

 \underline{ \underline{ \sf \: The \: required \: Answer \: is \: 109.}}

Similar questions