Math, asked by sy2331825, 4 months ago


The sum of the numerator and denominator of a fraction is 17. On adding 3 to the numerator
and subtracting 3 from the denominator we get the reciprocal of the fraction. Find the fraction.

Answers

Answered by Anonymous
17

Given :

  • The sum of the numerator and denominator of a fraction is 17.

  • On adding 3 to the numerator and subtracting 3 from the denominator we get the reciprocal of the fraction.

To Find :

Required Fraction = ?

Answer :

  • Let Numerator be x
  • Denomintaor be y
  • Required fraction = Numerator/Denomintaor = x/y

\bigstar \: \:\displaystyle \underline{\textsf{According to Question now :}} \\  \\

It is given that, The sum of the numerator and denominator of a fraction is 17 :]

:\implies \sf x + y = 17 \qquad\Bigg\lgroup\textsf{\textbf{Equation (I)}}\Bigg\rgroup \\  \\  \\

It is also given that, On adding 3 to the numerator

and subtracting 3 from the denominator we get the reciprocal of the fraction :]

:\implies \sf \dfrac{x + 3}{y - 3} = \dfrac{y}{x} \qquad\Bigg\lgroup\textsf{\textbf{Equation II}}\Bigg\rgroup \\  \\  \\

Now, by cross multiplying both sides we get :

:\implies \sf x(x + 3) = y(y - 3) \\  \\  \\

:\implies \sf  {x}^{2} + 3x =  {y}^{2}  - 3y \\  \\  \\

:\implies \sf  {x}^{2} + 3x  -  {y}^{2}   +  3y = 0 \\  \\  \\

:\implies \sf  {x}^{2}  -  {y}^{2}   + 3x +  3y = 0 \\  \\  \\

:\implies \sf  {x}^{2}  -  {y}^{2}   + 3(x +  y )= 0 \\  \\  \\

:\implies \sf  {x}^{2}  -  {y}^{2}   + 3(17)= 0 \qquad\Bigg\lgroup\textsf{\textbf{Taking 17 from Equation (I)}}\Bigg\rgroup \\  \\  \\

:\implies \sf  {x}^{2}  -  {y}^{2}   + 51= 0 \\  \\  \\

:\implies \sf  {x}^{2}  -  {y}^{2}  =  -  51 \\  \\  \\

By using identity - = (a + b) (a - b) we get :

:\implies \sf  ( x + y) (x -  y )   =  -  51\\  \\  \\

:\implies \sf  17 \times x -  y   =  - 51\\  \\  \\

:\implies \sf  x -  y   =  \dfrac{ - 51}{17} \\  \\  \\

:\implies \sf  x -  y   =  - 3\qquad\Bigg\lgroup\textsf{\textbf{Equation II}}\Bigg\rgroup\\  \\  \\

By solving equation (I) and equation (II) we get :

:\implies \sf 2x = 14 \\  \\  \\

:\implies \sf x = \dfrac{14}{2}  \\  \\  \\

:\implies  \underline{ \boxed{\sf x = 7}} \\  \\  \\

Now, Substituting the value of x = 7 in equation (I) we get :

\dashrightarrow\:\:\sf 7 + y = 17  \\  \\  \\

\dashrightarrow\:\:\sf y = 17  - 7 \\  \\  \\

\dashrightarrow\:\: \underline{ \boxed{\sf  y = 10 }} \\  \\  \\

\bigstar\:\:\underline{\textsf{Required Fraction :}}

:\implies \sf Required \:  Fraction= \dfrac{Numerator}{Denomintaor} \\  \\  \\

:\implies \sf Required \:  Fraction= \dfrac{x}{y} \\  \\  \\

:\implies \underline{ \boxed{ \sf Required \:  Fraction= \dfrac{7}{10}}} \\  \\  \\

\therefore\:\underline{\textsf{Required Fraction is \textbf{$\dfrac{\text {7}}{\text {10}}$}}}.\\

Answered by Anonymous
7

 \large{\underline{\bf{Given:-}}}

✞Sum if Numerator and Denominator = 17

✞After adding 3 to the numerator and subtracting 3 from the denominator we get the reciprocal of the fraction.

 \large{\underline{\bf{Find:-}}}

✟What will be the Fraction

 \large{\underline{\bf{Solution:-}}}

Let,

Numerator = x

Denominator = y

Now, It is said that Sum of numerator and denominator is 17

➮x + y = 17.................➊

Now, It is written that after adding 3 on numerator and subtracting 3 from denomiator fraction becomes reciprocal of original fraction.

\sf \dfrac{x+3}{y-3}=\dfrac{y}{x}..................➋

Taking Eq.

⇨x + y = 17

⇨x = 17-y

Using this value in eq

\sf \dfrac{x+3}{y-3}=\dfrac{y}{x}

\\

\sf \dfrac{17-y+3}{y-3}=\dfrac{y}{17-y}

\\

\sf \dfrac{20-y}{y-3}=\dfrac{y}{17-y}

\\

\sf \bigstar Corss-multiplication\bigstar

\sf 20-y(17-y)=y(y-3)

\\

\sf 340-17y-20y+y^2=y^2 - 3y

\\

\sf 340-37y+\not{y^2}=\not{y^2} - 3y

\\

\sf 340-37y= - 3y

\\

\sf 340= - 3y+37y

\\

\sf 340= 34y

\\

\sf \dfrac{340}{34}= y

\\

\sf 10 =y

\\

\small{\sf\therefore y = 10\red\bigstar}

Substituting Value of y in eq

➪x + y = 17

\\

➪x + 10 = 17

\\

➪x = 17-10

\\

➪x = 7

\\

\small{\sf\therefore x = 7 \pink\bigstar}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Thus,

Original Fraction = \bf{\dfrac{x}{y} = \dfrac{7}{10}}

Similar questions