Math, asked by hameedabdul54411, 11 months ago

The sum of the real roots of the equation | x 6 1 |
| 2 3x (x - 3)| = 0 | 3 2x (x = 2)|
is equal to (A) -4 (B) 0
(C) 6 (D) 1

Answers

Answered by MaheswariS
0

\left|\begin{array}{ccc}x&6&1\\2&3x&x-3\\3&2x&x-2\end{array}\right|=0

\left|\begin{array}{ccc}x&6&1\\2&3x&x-3\\1&-x&-1\end{array}\right|=0 R_3\implies\,R_3-R_2

\text{Expanding along first row}

x(-3x+x(x-3))-6(-2-x+3)+1(-2x-3x)=0

x(-3x+x^2-3x)-6(-x+1)+1(-5x)=0

x(-6x+x^2)+6x-6-5x=0

-6x^2+x^3+x-6=0

x^2(x-6)+1(x-6)=0

(x^2+1)(x-6)=0

x^2+1=0\;\text{or}\;x-6=0

x^2+1=0\;\text{or}\;x=6

x^2+1=0\;\text{gives unreal roots}

\therefore\textbf{The only real root is 6}

\implies\textbf{The sum of the real roots is 6}

\textbf{Option (C) is correct}

Answered by mad210220
0

The sum of real roots of given equation is 6

option (C)

Step-by-step explanation:

\left|\begin{array}{ccc}x&6&1\\2&3x&x-3\\1&-x&-1\end{array}\right|=0 R_3\implies\,R_3-R_2

\text{We can expand through any Row and Column}

\text{But we choose the Row or Column with minimum unknowns and maximum zeroes}

\text{So we will expand through Row I}

x(3x(-1) - (-x)(x - 3)) - 6(2(-1) - 1(x - 3)) + 1(2(-x) - 1(3x)) =0-6x^2+x^3+x-6=0

\text{On expanding each bracket and solving above equation, we get:-}

x^2(x-6)+1(x-6)=0

\textbf{Taking (x-6) common , we get :-}

(x^2+1)(x-6)=0

\text{Equation will become zero if}

x-6=0\;\text{or}\;x^2+1=0 \text{or}

x=6\;\text{or}\;x^2+1=0

x^2+1=0\;\text{It gives unreal roots because square root of real number can not be negative}

x^2+1=0\;\textbf{gives unreal roots}

\textbf{ So, x=6 will be the only real root}

\textbf{ So, the sum of real roots of this equation is 6}

\textbf{So correct option is C}

Similar questions